Skip to main content

Introduction

  • Chapter
  • First Online:
  • 951 Accesses

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Making soft robots that can flexibly transform among different morphologies has long been a dream in both science and engineering areas. With outstanding versatile capabilities, liquid metals are opening breakthrough strategies for molding future smart soft robots that had never been anticipated before or hardly achievable by a rigid metal or conventional material. All the evidences collected so far pointed out that liquid metal machine is evolving via a rather quick way. The latest discoveries on a group of very fundamental phenomena of liquid metals and technological advances thus enabled significantly strengthened this endeavor. Clearly, combining allied components with the liquid metal systems is offering many brand new machine roles as well as incubating future highly advanced robots. In fact, capabilities as offered by liquid metals are far much profound than one can expect. There is plenty of space to explore in the area. This chapter gives a brief overview of soft robots and some unconventional opportunities that liquid metal could provide for innovating the soft machine science and technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/Robot

  2. Bradley JC, Chen HM, Crawford J et al (1997) Creating electrical contacts between metal particles using directed electrochemical growth. Nature 389:268–271

    Article  CAS  Google Scholar 

  3. Curtis CL, Ritchie JE, Sailor MJ (1993) Fabrication of conducting polymer interconnects. Science 262:2014–2016

    Article  CAS  Google Scholar 

  4. Eelkema R, Pollard MM, Vicario J et al (2006) Nanomotor rotates microscale objects. Nature 440:163

    Article  CAS  Google Scholar 

  5. Zhao Y, Fang J, Wang HX et al (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22:707–710

    Article  CAS  Google Scholar 

  6. Nawroth JC, Lee H, Feinberg AW et al (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797

    Article  CAS  Google Scholar 

  7. Liu Y, Gao M, Mei SF et al (2013) Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl Phys Lett 103:064101–064104

    Article  Google Scholar 

  8. Laschi C, Mazzolai B, Mattoli V et al (2009) Design and development of a soft actuator for a robot inspired by the octopus arm. Exper Robot 54:25–33

    Article  Google Scholar 

  9. Lin HT, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomimetics 6:026007–026018

    Article  Google Scholar 

  10. Seok S, Onal C, Wood R et al (2010) Peristaltic locomotion with antagonistic actuators in soft robotics. In: International conference on robotics and automation, vol 1, pp 1228–1233

    Google Scholar 

  11. Quillin KJ (1999) Kinematic scaling of locomotion by hydrostatic animals: Ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J Exp Biol 202:661–674

    Google Scholar 

  12. Jung K, Koo JC, Nam JD et al (2007) Artificial annelid robot driven by soft actuators. Bioinspiration Biomimetics 2:42–49

    Article  Google Scholar 

  13. Yuk H, Kim D, Lee H et al (2011) Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspiration Biomimetics 6:046002–046015

    Article  Google Scholar 

  14. Simon MA, Woods WA, Serebrenik YV et al (2010) Visceral-locomotorypistoning in crawling caterpillars. Curr Biol 20:1458–1463

    Article  CAS  Google Scholar 

  15. Trimmer B, Issberner J (2007) Kinematics of soft-bodied, legged locomotion in Manducasexta larvae. Biol Bull 212:130–142

    Article  Google Scholar 

  16. Metallo C, White RD, Trimmer BA (2011) Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. J Neurosci Meth 195:176–184

    Article  Google Scholar 

  17. Sumbre G, Fiorito G, Flash T, Hochner B (2005) Motor control of flexible octopus arms. Nature 433:595–596

    Article  CAS  Google Scholar 

  18. Shepherd RF, Ilievski F, Choi W et al (2011) Multigait soft robot. P Natl Acad Sci USA 108:20400–20403

    Article  CAS  Google Scholar 

  19. Margheri L, Laschi C, Mazzolai B (2012) Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration Biomimetics 7:025004–025016

    Article  CAS  Google Scholar 

  20. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294

    Article  CAS  Google Scholar 

  21. Wehner M, Truby RL, Fitzgerald DJ et al (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455

    Article  CAS  Google Scholar 

  22. Li HY, Mei SF, Wang L, Gao YX, Liu J (2014) Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int J Heat Fluid Flow 47:1–8

    Article  Google Scholar 

  23. Liu J (2016) Liquid metal machine is evolving to soft robotics. Sci China Technol Sc 59:1793–1794

    Article  Google Scholar 

  24. Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26:6036–6042

    Article  CAS  Google Scholar 

  25. Tang SY, Khoshmanesh K, Sivan V et al (2014) Liquid metal enabled pump. Proc Natl Acad Sci USA 111:3304–3309

    Article  CAS  Google Scholar 

  26. Hu L, Wang L, Ding Y et al (2016) Manipulation of liquid metals on a graphite surface. Adv Mater 28:9210–9217

    Article  CAS  Google Scholar 

  27. Hu L, Yuan B, Liu J (2017) Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci Rep 7:7256–7264

    Article  Google Scholar 

  28. Wang L, Liu J (2016) Graphite induced periodical self-actuation of liquid metal. RSC Adv 6:60729–60735

    Article  CAS  Google Scholar 

  29. Tang J, Zhao X, Li J et al (2017) Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci 5:1700024–1700029

    Article  Google Scholar 

  30. Chen S, Yang X, Cui Y, Liu J (2018) Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Appl Mater Interfaces 10:22889–22895

    Article  CAS  Google Scholar 

  31. Zhang J, Yao Y, Sheng L, Liu J (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27:2648–2655

    Article  CAS  Google Scholar 

  32. Zhang J, Yao YY, Liu J (2015) Autonomous convergence and divergence of the self-powered soft liquid metal vehicles. Sci Bull 60:943–951

    Article  CAS  Google Scholar 

  33. Tan SC, Yuan B, Liu J (2016) Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proc R Soc A-Math Phys 41:22663–22667

    CAS  Google Scholar 

  34. Yuan B, Wang L, Yang X, Ding Y, Tan S, Yi L, He ZZ, Liu J (2016) Liquid metal machine triggered violin-like wire oscillator. Adv Sci 3:1600212–1600215

    Article  Google Scholar 

  35. Zhang J, Guo R, Liu J (2016) Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 4:5349–5357

    Article  CAS  Google Scholar 

  36. Yao Y, Liu Y (2016) Liquid metal wheeled small vehicle for cargo delivery. RSC Adv 6:56482–56488

    Article  CAS  Google Scholar 

  37. Wang XL, Liu J (2016) Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7:206–229

    Article  Google Scholar 

  38. Yao Y, Liu Y (2017) A polarized liquid metal worm squeezing across localized irregular gap. RSC Adv 7:11049–11056

    Article  CAS  Google Scholar 

  39. Wang Q, Yu Y, Liu J (2017) Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater 2017:1700781–1700800

    Google Scholar 

  40. Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62:415–440

    Article  CAS  Google Scholar 

  41. Zavabeti S, Daeneke T, Chrimes A et al (2016) Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 7:12402

    Article  CAS  Google Scholar 

  42. Gough RC, Dang JH, Moorefield MR et al (2016) Self-actuation of liquid metal via redox reaction. ACS Appl Mater Interfaces 8:6–10

    Article  CAS  Google Scholar 

  43. Fang WQ, He ZZ, Liu J (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105:1341041–1341044

    Google Scholar 

  44. Khan MR, Trlica C, Dickey MD (2015) Recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv Funct Mater 25:671–678

    Article  CAS  Google Scholar 

  45. Sheng L, He Z, Yao Y, Liu J (2015) Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small 11(39):5253–5261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Sheng, L., He, ZZ. (2019). Introduction. In: Liquid Metal Soft Machines. Topics in Mining, Metallurgy and Materials Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2709-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2709-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2708-7

  • Online ISBN: 978-981-13-2709-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics