Skip to main content

Mechanical Properties of Carbon-Containing Polymer Composites

  • Chapter
  • First Online:
Carbon-Containing Polymer Composites

Abstract

The carbon particles in micro- and nanometric size are the prominently used as particulate filler in polymer matrix to improve mechanical properties. The carbon black is the most widely used cost-effective filler, but require higher loading levels to get optimum mechanical properties. Researchers all over the world are investigating the various nanoforms of carbon like Fullerenes, Carbon nanofibres, Carbon nanotubes, Nano diamond and Graphene as fillers in polymer matrix to improve mechanical properties at low loading levels. These nano-sized carbon particles, impart additional properties like improved electrical conductivity, reduced friction, higher heat dissipation and improved hydrophobic nature, etc., which makes them preferred candidate despite of higher cost. New methods for functionalization and dispersion are attempted to capitalize the full potential of these nanomaterials. This chapter gives a bird’s eye view of progress made in the preparation of these nanocomposites, advanced functionalization, and dispersion methods, and their impact on the mechanical properties of polymer nanocomposites. The obstacles in converting lab-scale achievements into large-scale applications also discussed and suitable suggestions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnet JB, Voet A, Dekker (1976) Carbon black, physics, chemistry, and elastomer reinforcement. New York

    Google Scholar 

  2. White JL (1995) Rubber processing: technology, materials, and principles. Hanser Publishers, Munich

    Google Scholar 

  3. Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci Part B Polym Phys 37(22):3172–3187

    Article  CAS  Google Scholar 

  4. Park S J (1999). In: Hsu JP (ed) Interfacial forces and field: theory and applications, Dekker, New York, p 385

    Google Scholar 

  5. Zhang Z, Zhang G, Li D, Liu Z, Chen X (1999) Chlorohydrin water-swellable rubber compatibilized by an amphiphilic graft copolymer. II. Effects of PVA-g-PBA and CPA on water-swelling behaviors. J Appl Polym Sci 74:3145–3152

    Article  CAS  Google Scholar 

  6. Perez LD, Giraldo LF, Brostow W, Lopez B (2007) Poly (methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. E-polymers, 29:324–334

    Google Scholar 

  7. Zhou XW, Zhu YF, Liang J (2007) Preparation and properties of powder styrene–butadiene rubber composites filled with carbon black and carbon nanotubes. Mater Res Bull 42:456–464

    Article  CAS  Google Scholar 

  8. Ibarra L, Rodrıguez A, Mora I (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J 43:753–761

    Article  CAS  Google Scholar 

  9. Miyagawa H, Drzal LT (2004) Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 45:5163–5170

    Article  CAS  Google Scholar 

  10. Schadler LS, Giannaris SC, Ajayan PM (1999) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844

    Article  Google Scholar 

  11. Bansal RC, Donnet JB, Stoeckli F (1988) Active carbon. Marcel Dekker, New York and Basel

    Google Scholar 

  12. Wang MJ, Wolff S (1993) Carbon black science and technology. In: Donnet JB, Bansal RC, Wang MJ (eds), Dekker, NewYork, p 229

    Google Scholar 

  13. Mather PJ, Thomas KM (1997) Carbon black/ high density polyethylene conducting composite materials. J Mater Sci 32:401–407

    Article  CAS  Google Scholar 

  14. Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36:1043–1054

    Article  CAS  Google Scholar 

  15. Katbab AA, Nazockdast H, Bazgir S (2000) Carbon black-reinforced dynamically cured EPDM/PPThermoplastic elastomers. I. Morphology, rheology, and dynamic mechanical properties. J Appl Polym Sci 75:1127–1137

    Article  CAS  Google Scholar 

  16. Hwang J, Muth J, Ghosh T (2007) Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J Appl Polym Sci 104:2410–2417

    Article  CAS  Google Scholar 

  17. Liang JZ, Yang QQ (2009) Mechanical properties of carbon black-filled high-density polyethylene antistatic composites. J Reinf Plasto Compos 28–3:295–304

    Article  CAS  Google Scholar 

  18. Sau KP, Chaki TK, Khastgir D (1999) Electrical and mechanical properties of conductingcarbon black filled composites based on rubberand rubber blends. J Appl Polym Sci 71:887–895

    Article  CAS  Google Scholar 

  19. King JA, Tucker KW, Vogt BD, Weber EH, Quan CL (1999) Electrically and thermally conductive nylon 6,6. Polym Compos 20(5):643–654

    Article  CAS  Google Scholar 

  20. Zheng G, Wu J, Wang W, Pan C (2004) Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon 42:2839–2847

    Article  CAS  Google Scholar 

  21. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JdD, Rojas-Cervantes ML, Martın-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592

    Article  CAS  Google Scholar 

  22. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  23. Etmimi HM, Tonge MP, Sanderson RD (2011) Synthesis and characterization of polystyrene-graphite nanocomposites via surface RAFT-mediated miniemulsion polymerization. J Polym Sci Part A Polym Chem 49:1621–1632

    Article  CAS  Google Scholar 

  24. Cao NZ, Shen WC, Wen SZ, Liu YJ, Wang ZD, Inagaki M (1996) The factors influencing the porous structure of expanded graphite. Mater Sci Eng (Chin) 14:22–26

    CAS  Google Scholar 

  25. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051

    Article  CAS  Google Scholar 

  26. Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235

    Article  CAS  Google Scholar 

  27. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817

    Article  CAS  Google Scholar 

  28. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45:8211–8219

    Article  CAS  Google Scholar 

  29. Nierengarten J-F, Guttierez-Nava M, Zhang S, Masson P, Oswald L, Bourgogne C (2004) Fullerene-containing macromolecules for materials science applications. Carbon 42:1077–1083

    Article  CAS  Google Scholar 

  30. Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplasticpolyurethane/fullerene composites: Effect of surface modification offullerene. Compos Part B Eng 80:101–107

    Article  CAS  Google Scholar 

  31. Rafiee MA, Yavari F, Rafiee J, Koratkar N (2011) Fullerene–epoxy nanocomposites-enhanced mechanicalproperties at low nanofiller loading. J Nanopart Res 13:733–737

    Article  CAS  Google Scholar 

  32. Pikhurov DV, Zuev VV (2013) The effect of Fullerene C60 on the mechanical and dielectrical behavior of epoxy resins at low loading. Nanosyst Phys Chem Math 4(6):834–843

    Google Scholar 

  33. Okonkwo AO, Jagadale P, Herrera JEG, Hadjiev VG, Saldana JM, Tagliaferro A, Hernandez FCR (2015) High-toughness/low-friction ductile epoxy coatings reinforced with carbon nanostructures. Polym Test 47:113–119

    Article  CAS  Google Scholar 

  34. Pikhurov DV, Zuev VV (2016) The study of mechanical and tribological performance of fulleroid materials filled PA6 composites. Lubricants 4:13

    Article  Google Scholar 

  35. Calleja FJB, Giri L (1996) Structure and mechanical properties ofpolyethylene-fullerene composites. J Mater Sci 31:5153–5157

    Article  Google Scholar 

  36. Ogasawara T, Ishida Y, Kasai T (2009) Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos Sci Technol 69:2002–2007

    Article  CAS  Google Scholar 

  37. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  CAS  Google Scholar 

  38. Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diam Relat Mater 16:1213–1217

    Article  CAS  Google Scholar 

  39. Shenderova OA, Gruen DM (2006) Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew Publishing, New York

    Google Scholar 

  40. Chou CC, Lee SH (2010) Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminium alloy. Wear 269:757–762

    Article  CAS  Google Scholar 

  41. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128(35):11635–11642

    Article  CAS  PubMed  Google Scholar 

  42. Osswald S, Havel M, Mochalin V, Yushin G, Gogotsi Y (2008) Increase of nano diamond crystal size by selective oxidation. Diamond Relat Mater 17(7–10):1122–1126

    Article  CAS  Google Scholar 

  43. Steenackers M, Lud SQ, Niedermeier M, Bruno P, Gruen DM, Feulner P, Stutzmann M, Garrido JA, Jordan R (2007) Structured polymer grafts on diamond. J Am Chem Soc 129:15655–15661

    Article  CAS  PubMed  Google Scholar 

  44. Zhao YQ, Lau KT, Kim JK, Xu CL, Zhao DD, Li HL (2010) Nanodiamond/poly (lactic acid) nanocomposites: effect of nanodiamond on structure and properties of poly (lactic acid). Compos Part B Eng 41:646–653

    Article  CAS  Google Scholar 

  45. Barnard AS, Sternberg M (2007) Crystallinity and surface electrostatics of diamond nanocrystals. J Mater Chem 17(45):4811–4819

    Article  CAS  Google Scholar 

  46. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43(8):1722–1730

    Article  CAS  Google Scholar 

  47. Behler KD, Stravato A, Mochalin V, Korneva G, Yushin G, Gogotsi Y (2009) Nanodiamond-polymer composite fibers and coatings. ACS Nano 3–2:363–369

    Article  CAS  Google Scholar 

  48. Roumeli E, Pavlidou E, Avgeropoulos A, Vourlias G, Bikiaris DN, Chrissafis K (2014) Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene. J Phys Chem B 118:11341–11352

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Naito K, Tanaka Y, Kagawa Y (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536–538

    Article  CAS  Google Scholar 

  50. Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415–4421

    Article  CAS  Google Scholar 

  51. Zhai YJ, Wang ZC, Huang W, Huang JJ, Wang YY, Zhao YQ (2011) Improved mechanical properties of epoxy reinforced by low content nano diamond powder. Mat Sci Eng A Struct 528:7295–7300

    Article  CAS  Google Scholar 

  52. Guo H, Sheng H, Peng X, Yu X, Naito K, Qu X, Zhang Q (2014) Preparation and mechanical properties of epoxy/diamond nanocomposites. Polym Compos 35:2144–2149

    Article  CAS  Google Scholar 

  53. Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71:710–716

    Article  CAS  Google Scholar 

  54. Zhou ZP (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50(13):2999–3006

    Article  CAS  Google Scholar 

  55. Ma H, Zeng J, Mary LR, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63:1617–1628

    Article  CAS  Google Scholar 

  56. Tong X, Chen Y, Cheng H (2005) Influence of carbon nanofiber addition on mechanical properties and crystallization behavior of polypropylene. J Mater Sci Technol 21(5):686–690

    CAS  Google Scholar 

  57. Park JH, Lee SC (2016) Crystallization kinetics and mechanical properties of poly(lactic acid)/carbon nanofiber composites. Text Sci Eng 53:55–61

    Article  Google Scholar 

  58. Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/ epoxy composites. J Mater Des 31(5):2406–2413. https://doi.org/10.1016/j.matdes.2009.11.058

    Article  CAS  Google Scholar 

  59. Lafdi K, Fox W, Matzek M, Yildiz E (2008) Effect of carbon nanofiber-matrix adhesion on polymeric nanocomposite properties—Part II. J Nano mater, Article ID 310126, p 8. https://doi.org/10.1155/2008/310126

    Article  CAS  Google Scholar 

  60. Danni N, Sasikumar T (2016) Characterization of electrospun carbon nanofiber mat reinforced polymer composites using ultra-sonic scanning method. Dig J Nanomater Biostruct 11(1):141–148

    Google Scholar 

  61. Zhang D, Zhao Y, Cabrera E, Zhao Z, Castro JM, Lee LJ (2016) Improved sand erosion resistance and mechanical properties of multifunctional carbon nanofiber nanopaper enhanced glass fiber/epoxy composites. SPE ANTEC Indianap, 411–415

    Google Scholar 

  62. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductivecomposites. Carbon 47:2–22

    Article  CAS  Google Scholar 

  63. Kingsuk M, Dipiti P, Dhannu L, Kanik R, Gyanesh NM (2004) Synthesis of coiled/straight carbon nanofibers by catalystic chemical vapor deposition. Carbon 42:3251–3272

    Article  CAS  Google Scholar 

  64. Khattab A, Liu C, Chirdon W, Hebert C (2012) Mechanical and thermal characterization of carbon nanofiber reinforced low-density polyethylene composites. J Thermoplast Compos 26(7):954–967

    Article  CAS  Google Scholar 

  65. Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De VB, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects onthe electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704

    Article  PubMed  CAS  Google Scholar 

  66. Dhakate SR, Chaudhary A, Gupta A, Pathak AK, Singh BP, Subhedara KM, Yokozekib T (2016) Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Adv 6:36715–36722

    Article  CAS  Google Scholar 

  67. Meyyappan M (2005) Carbon nanotube: science and applications. CRC Press, Florida

    Google Scholar 

  68. O’Connell MJ (ed) (2006) Carbon nanotubes—properties and applications. Taylor and Francis, Boca Raton

    Google Scholar 

  69. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  70. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  71. Yu MF, Lourie O, Dyer M, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load”. Science 287:637–639

    Article  CAS  PubMed  Google Scholar 

  72. Lau KT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos Part B Eng 33:263–277

    Article  Google Scholar 

  73. Rahul MC, Ghassemieh E (2012) Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties. J Appl Polym Sci 124:4993–5001

    Google Scholar 

  74. Bokobza L (2012) Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties. Express Polym Lett 6(3):213–223

    Article  CAS  Google Scholar 

  75. Wang W, Ciselli P, Kuznetsov E, Peijs T, Barber AH (2008) Effective reinforcement in carbon nanotube–polymer composites. Philos Trans R Soc A 366:1613–1626

    Article  CAS  Google Scholar 

  76. Kim MT, Park H, Hui D, Rhee KY (2011) Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites. J Nanosci Nanotechnol 11:7369–7373

    Article  CAS  PubMed  Google Scholar 

  77. Tugrul Seyhan A, Gojny FH, Tanoglu M, Schulte K (2007) Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. Eur Polym J 43:374–379

    Article  CAS  Google Scholar 

  78. Jagtap BS, Ratna D (2013) Novel method of dispersion of multiwalled carbon nanotubes in a flexible epoxy matrix. J Appl Polym Sci 130:2610–2618

    Article  CAS  Google Scholar 

  79. Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177–182

    Article  CAS  Google Scholar 

  80. Basuli U, Chaki TK, Chattopadhyay S, Sabharwal S (2010) Thermal and mechanical properties of polymer-nanocomposites based on ethylene methyl acrylate and multiwalled carbon nanotube. Polym Compos 31:1168–1178

    CAS  Google Scholar 

  81. Chou WJ, Wang CC, Chen CY (2008) Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes. Compos Sci Technol 68:2208–2213

    Article  CAS  Google Scholar 

  82. Das A, Stockelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Kluppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 49:5276–5283

    Article  CAS  Google Scholar 

  83. Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47:1723–1737

    Article  CAS  Google Scholar 

  84. Kim JA, GiSeong D, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905

    Article  CAS  Google Scholar 

  85. Jiang X, Bin Y, Matsuo M (2005) Electrical and mechanical properties of polyimide–carbon nanotubescomposites fabricated by in situ polymerization. Polymer 46:7418–7424

    Article  CAS  Google Scholar 

  86. Guo P, Chen X, Gao X, Song H, Shen H (2007) Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos Sci Technol 67:3331–3337

    Article  CAS  Google Scholar 

  87. Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC (2006) Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos Sci Technol 66:1190–1197

    Article  CAS  Google Scholar 

  88. Gojny FH, Schulte K (2004) Functionalisation effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64:2303–2308

    Article  CAS  Google Scholar 

  89. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65:2300–2313

    Article  CAS  Google Scholar 

  90. Jiang Q, Wang X, Zhu Y, Hui D, Qiu Y (2014) Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos Part B Eng 56:408–412

    Article  CAS  Google Scholar 

  91. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  92. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654

    Article  CAS  Google Scholar 

  93. Sahoo BP, Naskar K, Tripathy DK (2016) Multiwalled carbon nanotube-filled ethylene acrylic elastomer nanocomposites: influence of ionic liquids on the mechanical, dynamic mechanical, and dielectric properties. Polym Compos 37:2568–2580

    Article  CAS  Google Scholar 

  94. Poikelispaa M, Das A, Dierkes W, Vuorinen J (2013) The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. J Appl Polym Sci 130:3153–3160

    Article  CAS  Google Scholar 

  95. Sasikumar K, Manoj NR, Mukundan T, Khastgir D (2014) Design of XNBR nanocomposites for underwater acoustic sensor applications: effect of MWNT on dynamic mechanical properties and morphology. J Appl Polym Sci 131:40752

    Article  CAS  Google Scholar 

  96. Kuan HC, Ma C-CM, Chang W-P, Yuen S-M, Wu H-H, Lee T-M (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol. 65:1703–1710

    Article  CAS  Google Scholar 

  97. Lopez MMA, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505

    Article  CAS  Google Scholar 

  98. Guth E, Gold O (1938) On the hydro dynamical theory of the viscosity of suspensions. Phys Rev 53:322–325

    CAS  Google Scholar 

  99. Smallwood HM (1944) Limiting law of the reinforcement of rubber. J Appl Phys 15:758–766

    Article  CAS  Google Scholar 

  100. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  101. Chen JY, Wen YG, Guo YL, Wu B, Huang LP, Xue YZ, Geng DC, Wang D, Yu G, Liu YQ (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551

    Article  CAS  PubMed  Google Scholar 

  102. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  103. Dragoman D, Dragoman M (2007) Negative differential resistance of electrons in graphene barrier. Appl Phys Lett 90:203116

    Article  CAS  Google Scholar 

  104. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State 35(1):52–71

    Article  CAS  Google Scholar 

  105. Zhao X, Zhang QH, Chen DJ, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  106. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, FirsovA A (2004) Electric field effect in atomically thin carbon films. Science 5696:666–669

    Article  CAS  Google Scholar 

  107. Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632

    Article  CAS  Google Scholar 

  108. Su Q, Pang SP, Alijani V, Li C, Feng XL, Mullen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195

    Article  CAS  Google Scholar 

  109. Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. Polymer 52:1837–1846

    Article  CAS  Google Scholar 

  110. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, Guo Y, Hu Y (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22:6088–6096

    Article  CAS  Google Scholar 

  111. Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723

    Article  CAS  Google Scholar 

  112. Pramoda KP, Hussain H, Koh HM, Tan HR, He CB (2010) Covalent bonded polymer-graphene nanocomposites. J Polym Sci Part A Polym Chem 48:4262–4267

    Article  CAS  Google Scholar 

  113. Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822

    Article  CAS  Google Scholar 

  114. Bao C, Guo Y, Song L, Hu Y (2011) Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J Mater Chem 21:13942–13950

    Article  CAS  Google Scholar 

  115. Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6

    Article  CAS  Google Scholar 

  116. Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Nam JD, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242

    Article  CAS  Google Scholar 

  117. Jia X, Liu B, Huang L, Hui D, Yang X (2013) Numerical analysis of synergistic reinforcing effect of silica nanoparticle–MWCNT hybrid on epoxy-based composites. Compos Part B Eng 54:133–137

    Article  CAS  Google Scholar 

  118. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 71(8):1089–1097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sasikumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasikumar, K., Manoj, N.R., Mukundan, T., Rahaman, M., Khastgir, D. (2019). Mechanical Properties of Carbon-Containing Polymer Composites. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_4

Download citation

Publish with us

Policies and ethics