Skip to main content

Determination of Room Temperature Thermal Conductivity of Thorium—Uranium Alloys

  • Conference paper
  • First Online:
Thorium—Energy for the Future

Abstract

Room temperature thermal conductivity values of selected composition of Th-U alloys were experimentally measured employing Transient Plane Source (TPS) technique using slab sample geometry. Experimental values were fitted in an empirical model relating room temperature thermal conductivity with alloy composition. The trend has been explained based on actual microstructural features. The room temperature thermal conductivity values of Th-U alloys were found to be superior to that of other prevailing metallic and ceramic fuel candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Nuclear Association, [Online] http://www.world-nuclear.org/info/Facts-and-Figures/World-Nuclear-Power-Reactors-and-Uranium-Requirements/

  2. United Nations Development Programme, Human development report (1999)

    Google Scholar 

  3. A.J. Lane, Economic incentive for thorium reactor development, in Thorium Utilization in Power Reactors (Vienna, 1965)

    Google Scholar 

  4. IAEA, Thorium Fuel Cycle-Potential Benefits and Challenges, TECDOC 1450 (IAEA, 2005)

    Google Scholar 

  5. G.L. Copeland, Evaluation of Thorium-Uranium Alloys for the Unclad-Metal Breeder Reactor, ORNL-4557 (USAEC, 1970)

    Google Scholar 

  6. G.G. Bentle, A physical metallurgical study of thorium rich thorium-uranium alloys, NAA-SR-2069, in Evaluation of Thorium Uranium-Alloys for Unclad-Metal Breeder Reactor, ed. by G.L. Copeland (ORNL, 1970, USAEC, 1958)

    Google Scholar 

  7. G.H. Bannister, R.C. Burnett, J.R. Murray, Ageing and hot hardness characteristics of certain thorium alloys. J. Nucl. Mater. 2(1), 51 (1960)

    Article  Google Scholar 

  8. B.R. Hayward, P. Corzine, Thorium-uranium fuel elements for SRE, in Second Int’l Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958) p. P/785

    Google Scholar 

  9. The use of thorium in nuclear power reactors, WASH 1097 (Department of Reactor Development Technology, USAEC, 1969)

    Google Scholar 

  10. S. Das, R. Kumar, S. Kaity, S. Neogy, K.N. Hareendran, S.B. Roy, B.S.S. Daniel, G.P. Chaudhari, Characterization of microstructural, mechanical and thermal properties and ageing study of Th–3 wt.% U alloy. Nucl. Eng. Des. 282, 116–125 (2015)

    Article  Google Scholar 

  11. S. Das, S.B. Roy, G.P. Chaudhari, B.S.S. Daniel, Microstructural evolution of as-cast Th-U alloys. Prog. Nucl. Energy 88, 285–296 (2016)

    Article  Google Scholar 

  12. S. Das, S. Kaity, R. Kumar, J. Banerjee, S.B. Roy, G.P. Chaudhari, B.S.S. Daniel, Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy. J. Nucl. Mater. 480, 223–234 (2016)

    Article  Google Scholar 

  13. B. Raj, An overview of R&D of fast reactor fuel cycle. Int. J. Nucl. Energy Sci. Technol. 1(2/3), 164 (2005)

    Article  Google Scholar 

  14. S.E. Gustafsson. Rev. Sci. Instrum 62(3), 797 (1991)

    Google Scholar 

  15. S.E. Gustafsson, International Patent Application No. PCT/SE89/00137

    Google Scholar 

  16. Hot Disk Thermal Constants Analyser, Instruction Manual, Software version 5.9, Hot Disk (Sweden, 2007)

    Google Scholar 

  17. D.E. Peterson, The Th-U (thorium-uranium) system. Bull. Alloy Ph. Diagr. 6, 443 (1985)

    Article  Google Scholar 

  18. Y. Takahashi, M. Yamawaki, Y. Yamamoto, Thermophysical properties of uranium-zirconium alloys. J. Nucl. Mater. 154, 141 (1988)

    Article  Google Scholar 

  19. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-componenet systems. Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  20. M.J. Peet, H.S. Hasan, H.K.D.H. Bhadeshia, Prediction of thermal conductivity of steels. Int. J. Heat Mass Transf. 54, 2602 (2011)

    Article  Google Scholar 

  21. K. Yamada, K. Kurosaki, M. Uno, S. Yamanka, Evaluation of thermal properties of uranium dioxide by molecular dynamics. J. Alloys Compd. 307, 10 (2000)

    Article  Google Scholar 

  22. H.J. Ryu, Y.S. Kim, J.M. Park, H.T. Chae, C.K. Kim, Performance evaluation of U-Mo/Al dispersion fuel by considering a fuel-matrix interaction. Nucl. Eng. Technol. 40, 409 (2008)

    Article  Google Scholar 

  23. K. Almadhoni, S. Khan, Evaluation of the effective thermal properties of aluminum metal matrix composites reinforced by ceramic particles. Int. J. Curr. Eng. Technol. 5(4) (2015)

    Google Scholar 

  24. Bin Wan, K. Yue, L. Zheng, X. Zhang, The effective thermal conductivity of composite materials with spherical. Adv. Mater. Res. 239–242(1662–8985), 1870–1874 (2011)

    Article  Google Scholar 

  25. J.K. Chen, S.F. Chen, On thermal conductivity of an in-situ, in Metal, Ceramic and Polymeric Composites for Various Uses, ch. 10, ed. by Dr. J. Cuppoletti (INTECH, 2011)

    Google Scholar 

  26. T.C. Choy, Effective Medium Theory, Principles and Applications (Oxford Science Publications, New York, USA, 1999)

    Google Scholar 

  27. E. Nechtelberger, The Properties of Cast Irons up to 500 °C. Technical report (Technicopy Ltd.,1980)

    Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the help received from Shri Suman Neogy, MSD, BARC for TEM; Shri Dulal Mandal, Shri G. D. Vaidya, Shri N. K. Vernekar, Shri D. B. S. Bhandari, UED, BARC for their assistance in conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S. et al. (2019). Determination of Room Temperature Thermal Conductivity of Thorium—Uranium Alloys. In: Nayak, A., Sehgal, B. (eds) Thorium—Energy for the Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-2658-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2658-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2657-8

  • Online ISBN: 978-981-13-2658-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics