Skip to main content

Nonlinear Adiabatic Evolution of Quantum Systems

  • Chapter
  • First Online:
Nonlinear Adiabatic Evolution of Quantum Systems

Abstract

In this chapter, we discuss the physical origins of the nonlinearity in quantum many-body systems. Based on the nonlinear Schrödinger equation, we introduce the adiabatic evolution of the quantum states, including both eigenstates and noneigenstates, and we introduce the nonlinear geometric phase acquired by an eigenstate during the adiabatic evolution. A nonlinear two-mode model for Bose-Einstein condensates (BECs) is used to demonstrate the nonlinear adiabatic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberg, S.: Phys. Rev. Lett. 62, 485 (1989)

    Article  ADS  Google Scholar 

  2. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, London (2002)

    Google Scholar 

  3. Gross, E., Nuovo Cimento, P.: 20, 454 (1961); Pitaevskii, L.P.: Zh. Eksp. Teor. Fiz. 40, 646 (1961); Pitaevskii, L.P.: Sov. Phys. JETP 13, 451 (1961)

    Google Scholar 

  4. Chen, Y., Haus, H.A.: Chaos 10, 529 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Wai, P.K.A., Menyuk, C.R.H., Chen, H.: Opt. Lett. 16, 1231 (1991); Wai, P.K.A., Menyuk, C.R.: Lightwave Technol. J. 14, 362 (1996)

    Google Scholar 

  6. Pu, H., Maenner, P., Zhang, W.P., Ling, H.Y.: Phys. Rev. Lett. 98, 050406 (2007); Meng, S.Y., Fu, L.B., Liu, J.: Phys. Rev. A 78, 053410 (2008)

    Google Scholar 

  7. Itin, A.P., Watanabe, S.: Phys. Rev. Lett. 99, 223903 (2007); Itin, A.P., Watanabe, S., Konotop, V.V.: Phys. Rev. A 77, 043610 (2008)

    Google Scholar 

  8. Bergmann, K., Theuer, H., Shore, B.W.: Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  9. Dahan, M.B.: Phys. Rev. Lett. 76, 4508 (1996); Wilkinson, S.R., et al.: Phys. Rev. Lett. 76, 4512 (1996)

    Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, New York (1977); Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989); Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., Zwanziger, J.: The Geometric Phase in Quantum Systems. Springer, New York (2003)

    Google Scholar 

  11. Liu, J., Wu, B., Niu, Q.: Phys. Rev. Lett. 90, 170404 (2003)

    Article  ADS  Google Scholar 

  12. Kivshar, Y.S., Malomed, B.A.: Rev. Mod. Phys. 61, 763 (1989)

    Article  ADS  Google Scholar 

  13. Band, Y.B., Malomed, B., Trippenbach, M.: Phys. Rev. A 65, 033607 (2002); Band, Y.B., Trippenbach, M.: Phys. Rev. A 65, 053602 (2002); deValcárcel, G.J. Phys. Rev. A 67, 051601(R) (2003)

    Google Scholar 

  14. Aharonov, Y., Anandan, J.: Phys. Rev. Lett. 58, 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1978); Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, Berlin (1983)

    Google Scholar 

  16. Franzosi, R., Penna, V.: Phys. Rev. A 63, 043609 (2001)

    Article  ADS  Google Scholar 

  17. For a linear system, the chemical potential is equal to the eigenenergy. However, for a nonlinear system, they do not equal to each other in general

    Google Scholar 

  18. Yukalov, V.I., Yukalova, E.P., Bagnato, V.S.: Phys. Rev. A 66, 043601 (2002)

    Article  ADS  Google Scholar 

  19. Coullet, P., Vandenberghe, N.: J. Phys. B 35, 1593 (2002); Franzosi, R., Penna, V.: Phys. Rev. A 65, 013601 (2002)

    Google Scholar 

  20. Yurovsky, V.A., Ben-Reuven, A.: Phys. Rev. A 63, 043404 (2001); Vardi, A., Yurovsky, V.A., Anglin, J.R.: ibid. 64, 063611 (2001); Wu, B., Niu, Q.: ibid. 64, 061603 (2001); Staliunas, K., Longhi, S., Anglin, J.R.: Phys. Rev. Lett. 89, 210406 (2002)

    Google Scholar 

  21. Suter, D., Mueller, K.T., Pines, A.: Phys. Rev. Lett. 60, 1218 (1988); Weinfurter, H.: ibid. 64, 1318 (1990)

    Google Scholar 

  22. Berry, M.V.: J. Phys. A 17, 1225 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wu, B., Niu, Q.: Phys. Rev. A 61, 023402 (2000); Liu, J., et al.: Phys. Rev. A 66, 023404 (2002)

    Google Scholar 

  24. Milburn, G.J., et al.: Phys. Rev. A 55, 4318 (1997); Zapata, I., Sols, F., Leggett, A.J.: ibid. 57, R28 (1998); Vardi, A., Anglin, J.R.: ibid. 86, 568 (2001); Kohler, S., Sols, F.: ibid. 89, 060403 (2002)

    Google Scholar 

  25. Wilczek, F., Zee, A.: Phys. Rev. Lett. 52, 2111 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Macchiavello, C., Palma, G.M., Zeilinger, A.: Quantum Computation and Quantum Information Theory. World Scientific, Singapore (2000); Jones, J., Vedral, V., Ekert, A.K., Castagnoli, C.: Nature (London) 403, 869 (2000); Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: ibid. 407, 355 (2000); Duan, L.M., Cirac, I., Zoller, P.: Science 292, 1695 (2001)

    Google Scholar 

  27. Zhang, C., Dudarev, A.M., Niu, Q.: Phys. Rev. Lett. 97, 040401 (2006); Xiao, D., Yao, Y., Fang, Z., Niu, Q.: ibid. 97, 026603 (2006); Yao, W., Niu, Q.: ibid. 101, 106401 (2008)

    Google Scholar 

  28. Garrison, J.C., Chiao, R.Y.: Phys. Rev. Lett. 60, 165 (1988); Anandan, J.: Phys. Rev. Lett. 60, 2555 (1988)

    Google Scholar 

  29. Balakrishman, R., Metha, M.: Euro. Phys. J. D 33, 437 (2005)

    Article  ADS  Google Scholar 

  30. Wu, B., Liu, J., Niu, Q.: Phys. Rev. Lett. 94, 140402 (2005); Yi, X.X., Huang, X.L., Wang, W.: Phys. Rev. A 77, 052115 (2008)

    Google Scholar 

  31. Litvinets, F.N., et al.: J. Phys. A. 39, 1191 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, J., Fu, L.B.: Phys. Rev. A 81, 052112 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Smerzi, A., Fantoni, S., Giovanazzi, S., Shenoy, S.R.: Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  34. Berry, M.V.: Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Li, SC., Fu, LB., Ye, DF. (2018). Nonlinear Adiabatic Evolution of Quantum Systems. In: Nonlinear Adiabatic Evolution of Quantum Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-2643-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2643-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2642-4

  • Online ISBN: 978-981-13-2643-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics