Skip to main content

Thermal Stability and Phonon Thermal Transport in Spherical Silicon Nanoclusters

  • Chapter
  • First Online:
Phonon Thermal Transport in Silicon-Based Nanomaterials

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 450 Accesses

Abstract

Silicon nanoclusters /nanoparticles have attracted increasing attention in innovative technology due to their unique properties, which differ from those of bulk materials. Structural and thermodynamic properties of nanoclusters are fundamentally important for the performance and stability of nanocluster-based devices. Unlike the homogeneous melting of bulk silicon, the melting of crystalline silicon nanospheres proceeds over a finite temperature range due to surface effects , which shows the heterogeneous melting of nanoclusters. The melting temperature of silicon nanoclusters is lower than that of bulk silicon and rises with the increase of the cluster size. Structure changes upon heating indicates that the melting of silicon nanospheres is progressively developed from the surface and into the core. The structure of the spherical silicon nanocluster can change gradually from the bulk diamond structure to a non-diamond structure with the decrease in the cluster size. Hydrogenated silicon nanoclusters are thermally stable if the hydrogen coverage is more than 50%. The thermal conductivity of the spherical silicon nanoclusters shows a size-dependent effect arising from the remarkable phonon-boundary scattering and can be about three orders of magnitude lower than that of bulk silicon. The thermal conductivity of crystalline nanospheres also decreases as the temperature increases from 50 to 1000 K because of the stronger phonon-phonon scattering at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito, M., Imakita, K., Fujii, M., Hayashi, S.: Nonlinear optical properties of phosphorus-doped silicon nanocrystals/nanoclusters. J. Phys. D Appl. Phys. 43, 505101 (2010). https://doi.org/10.1088/0022-3727/43/50/505101

    Article  Google Scholar 

  2. Wang, M., Li, D., Yuan, Z., Yang, D., Que, D.: Photoluminescence of Si-rich silicon nitride: defect-related states and silicon nanoclusters. Appl. Phys. Lett. 90, 131903 (2007). https://doi.org/10.1063/1.2717014

    Article  ADS  Google Scholar 

  3. Meinardi, F., Ehrenberg, S., Dhamo, L., Carulli, F., Mauri, M., Bruni, F., Brovelli, S.: Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photon. 11(3), 177–185 (2017). https://doi.org/10.1038/nphoton.2017.5

    Article  ADS  Google Scholar 

  4. Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8(12), 4670–4674 (2008). https://doi.org/10.1021/nl8026795

    Article  ADS  Google Scholar 

  5. Fang, K.C., Weng, C.I.: An investigation into the melting of silicon nanoclusters using molecular dynamics simulations. Nanotechnology 16(2), 250–256 (2005). https://doi.org/10.1088/0957-4484/16/2/012

    Article  ADS  Google Scholar 

  6. Sang, L.V., Hoang, V.V., Tranh, D.T.N.: Melting of crystalline Si nanoparticle investigated by simulation. Eur. Phys. J. D 69, 208 (2015). https://doi.org/10.1140/epjd/e2015-60153-1

    Article  ADS  Google Scholar 

  7. Dozhdikov, V.S., Basharin, A.Y., Levashov, P.R.: Two-phase simulation of the crystalline silicon melting line at pressures from −1 to 3 GPa. J. Chem. Phys. 137(5), 054502 (2012). https://doi.org/10.1063/1.4739085

    Article  ADS  Google Scholar 

  8. Yu, D.K., Zhang, R.Q., Lee, S.T.: Structural transition in nanosized silicon clusters. Phys. Rev. B 65, 245417 (2002). https://doi.org/10.1103/PhysRevB.65.245417

    Article  ADS  Google Scholar 

  9. Zhang, R.Q.: Growth mechanisms and novel properties of silicon nanostructures from quantum-mechanical calculations. Springer, Berlin Heidelberg (2014)

    Book  Google Scholar 

  10. Zeng, J., Zhang, R.Q., Treutlein, H. (eds.): Quantum simulations of materials and biological systems. Springer, Dordrecht (2012)

    Google Scholar 

  11. Wu, Q., Wang, X.H., Niehaus, T.A., Zhang, R.Q.: Boundary and symmetry determined exciton distribution in two dimensional silicon nanosheets. J. Phys. Chem. C 118(35), 20070–20076 (2014). https://doi.org/10.1021/jp501433t

    Article  Google Scholar 

  12. Li, Q.S., Zhang, R.Q., Lee, S.T.: Stabilizing excited-state silicon nanoparticle by surface oxidation. Appl. Phys. Lett. 91, 043106 (2007). https://doi.org/10.1063/1.2762296

    Article  ADS  Google Scholar 

  13. Li, Q.S., Zhang, R.Q., Niehaus, T.A., Frauenheim, Th, Lee, S.T.: Theoretical studies on optical and electronic properties of propionic-acid-terminated silicon quantum dots. J. Chem. Theory Comput. 3(4), 1518–1526 (2007). https://doi.org/10.1021/ct700041v

    Article  Google Scholar 

  14. Lu, A.J., Zhang, R.Q., Lee, S.T.: Tunable electronic band structures of hydrogen-terminated <1112> silicon nanowires. Appl. Phys. Lett. 92, 203109 (2008). https://doi.org/10.1063/1.2936088

    Article  ADS  Google Scholar 

  15. Wang, X., Zhang, R.Q., Niehaus, T.A., Frauenheim, Th., Lee, S.T.: Hydrogenated silicon nanoparticles relaxed in excited states. J. Phys. Chem. C. 111(34), 12588–12593 (2007). https://doi.org/110.1021/jp071384j

  16. Yang, X.B., Zhang, R.Q.: Indirect-to-direct band gap transitions in phosphorus adsorbed <112> silicon nanowires. Appl. Phys. Lett. 93, 173108 (2008). https://doi.org/10.1063/1.3012372

    Article  ADS  Google Scholar 

  17. Li, H., Xu, H., Shen, X., Han, K., Bi, Z., Xu, R.: Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters. Sci. Rep. 26, 28067 (2016). https://doi.org/10.1038/srep28067

    Article  ADS  Google Scholar 

  18. Imakita, K., Ito, M., Naruiwa, R., Fujii, M., Hayashi, S.: Ultrafast third order nonlinear optical response of donor and acceptor codoped and compensated silicon quantum dots. Appl. Phys. Lett. 101, 041112 (2012). https://doi.org/10.1063/1.4739237

    Article  ADS  Google Scholar 

  19. Ito, M., Imakita, K., Fujii, M., Hayashi, S.: Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: annealing temperature dependence. J. Appl. Phys. 108, 063512 (2010). https://doi.org/10.1063/1.3480821

    Article  ADS  Google Scholar 

  20. Dick, K., Dhanasekaran, T., Zhang, Z., Meisel, D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124(10), 2312–2317 (2002). https://doi.org/10.1021/ja017281a

    Article  Google Scholar 

  21. Aguado, A., Jarrold, M.F.: Melting and freezing of metal clusters. Annu. Rev. Phys. Chem. 62, 151–172 (2011). https://doi.org/10.1146/annurev-physchem-032210-103454

    Article  ADS  Google Scholar 

  22. Alavi, S., Thompson, D.L.: Molecular dynamics simulations of the melting of aluminum nanoparticles. J. Phys. Chem. A 110(4), 1518–1523 (2006). https://doi.org/10.1021/jp053318s

    Article  Google Scholar 

  23. Shvartsburg, A.A., Jarrold, M.F.: Solid clusters above the bulk melting point. Phys. Rev. Lett. 85(12), 2530–2532 (2000). https://doi.org/110.1103/PhysRevLett.85.2530

  24. Samsonov, V.M., Sdobnyakov, N.Y., Vasilyev, S.A., Sokolov, D.N.: On the size dependence of the heats of melting of metal nanoclusters. Bull. Russ. Acad. Sci.: Phys. 80(5), 494–496 (2016). https://doi.org/10.3103/S1062873816050166

  25. Wang, J.L., Chen, X.S., Wang, G.H., Wang, B.L., Lu, W., Zhao, J.J.: Melting behavior in ultrathin metallic nanowires. Phys. Rev. B 66, 085408 (2002). https://doi.org/10.1103/PhysRevB.66.085408

    Article  ADS  Google Scholar 

  26. Li, H.P., Xu, R.F., Bi, Z.T., Shen, X.P., Han, K.: Melting properties of medium-sized silicon nanoclusters: a molecular dynamics study. J. Electron. Mater. 46(7), 3826–3830 (2017). https://doi.org/10.1007/s11664-016-5070-8

    Article  ADS  Google Scholar 

  27. Li, H.P., Zhang, R.Q.: Size-dependent structural characteristics and phonon thermal transport in silicon nanoclusters. AIP Adv. 3, 082114 (2013). https://doi.org/10.1063/1.4818591

    Article  ADS  Google Scholar 

  28. Mélinon, P., Kéghélian, P., Prével, B., Perez, A., Guiraud, G., LeBrusq, J., Lermé, J., Pellarin, M., Broyer, M.: Nanostructured silicon films obtained by neutral cluster depositions. J. Chem. Phys. 107, 10278 (1997). https://doi.org/10.1063/1.474168

    Article  ADS  Google Scholar 

  29. Hofmeister, H., Dutta, J., Hofmann, H.: Atomic structure of amorphous nanosized silicon powders upon thermal treatment. Phys. Rev. B 54, 2856 (1996). https://doi.org/10.1103/PhysRevB.54.2856

    Article  ADS  Google Scholar 

  30. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., Paillard, V.: Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62, 15942 (2000). https://doi.org/10.1103/PhysRevB.62.15942

    Article  ADS  Google Scholar 

  31. Chabal, Y.J.: Hydride formation on the Si(100):H2O surface. Phys. Rev. B 29, 3677 (1984). https://doi.org/10.1103/PhysRevB.29.3677

    Article  ADS  Google Scholar 

  32. Chabal, Y.J., Higashi, G.S., Raghavachari, K., Burrows, V.A.: Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: hydrogen termination and surface morphology. J. Vac. Sci. Technol. A 7, 2104 (1989). https://doi.org/10.1116/1.575980

    Article  ADS  Google Scholar 

  33. Zhang, R.Q., Costa, J., Bertran, E.: Role of structural saturation and geometry in the luminescence of silicon-based nanostructured materials. Phys. Rev. B 53, 7847 (1996). https://doi.org/10.1103/PhysRevB.53.7847

    Article  ADS  Google Scholar 

  34. Yu, D.K., Zhang, R.Q., Lee, S.T.: Structural properties of hydrogenated silicon nanocrystals and nanoclusters. J. Appl. Phys. 92, 7453 (2002). https://doi.org/10.1063/1.1513878

    Article  ADS  Google Scholar 

  35. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P.: New directions for low–dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  36. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008). https://doi.org/10.1038/nature06381

    Article  ADS  Google Scholar 

  37. Petermann, N., Stötzel, J., Stein, N., Kessler, V., Wiggers, H., Theissmann, R., Schierning, G., Schmechel, R.: Thermoelectrics from silicon nanoparticles: the influence of native oxide. Eur. Phys. J. B 88, 163 (2015). https://doi.org/10.1140/epjb/e2015-50594-7

    Article  ADS  Google Scholar 

  38. Kremer, R.K., Graf, K., Cardona, M., Devyatykh, G.G., Gusev, A.V., Gibin, A.M., Inyushkin, A.V., Taldenkov, A.N., Pohl, H.J.: Thermal conductivity of isotopically enriched 28Si: revisited. Solid State Commun. 131(8), 499–503 (2004). https://doi.org/10.1016/j.ssc.2004.06.022

    Article  ADS  Google Scholar 

  39. Juangsa, F.B., Muroya, Y., Ryu, M., Morikawa, J., Nozaki, T.: Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films. J. Phys. D Appl. Phys. 49, 365303 (2016). https://doi.org/10.1088/0022-3727/49/36/365303

    Article  Google Scholar 

  40. Wang, Z., Alaniz, J.E., Jang, W., Garay, J.E., Dames, C.: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11(6), 2206–2213 (2011). https://doi.org/10.1021/nl1045395

    Article  ADS  Google Scholar 

  41. Li, H.P., De Sarkar, A., Zhang, R.Q.: Surface-nitrogenation-induced thermal conductivity attenuation in silicon nanowires. EPL 96(5), 56007 (2011). https://doi.org/10.1209/0295-5075/96/56007

    Article  ADS  Google Scholar 

  42. Balandin, A.A.: Nanoscale thermal management. IEEE Potentials 21(1), 11–15 (2002). https://doi.org/10.1109/45.985321

    Article  Google Scholar 

  43. Li, H.P.: Molecular dynamics simulations of phonon thermal transport in low-dimensional silicon structures. Doctoral dissertation, City University of Hong Kong (2012)

    Google Scholar 

  44. Zou, J., Balandin, A.: Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932 (2001). https://doi.org/10.1063/1.1345515

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Peng Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, HP., Zhang, RQ. (2018). Thermal Stability and Phonon Thermal Transport in Spherical Silicon Nanoclusters. In: Phonon Thermal Transport in Silicon-Based Nanomaterials. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-13-2637-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2637-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2636-3

  • Online ISBN: 978-981-13-2637-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics