Methods to Search Permutation Polynomial Interleavers for Turbo Codes

  • Lucian TrifinaEmail author
  • Daniela Tarniceriu
Part of the Signals and Communication Technology book series (SCT)


In this chapter we present some methods to find good PP-based interleavers for turbo codes in a reasonable time. Spread factor and refined non-linearity degree metrics proposed for this goal by Takeshita (2007) are presented in Sects. 7.2 and 7.3, respectively. In Sects. 7.4 and 7.5 we present some methods to search PP interleavers adapted to a specific component code of the turbo code. These methods use both the distance spectrum of the turbo code and the metrics proposed in Takeshita (2007).


Turbo Codes Distance Spectrum Spread Factor Specific Component Code High Minimum Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. E. Boutillon, D. Gnaedig, Maximum spread of D-dimensional multiple turbo codes. IEEE Trans. Commun. 53(8), 1237–1242 (2005)CrossRefGoogle Scholar
  2. M. Breiling, A logarithmic upper bound on the minimum distance of turbo codes. IEEE Trans. Inf. Theory 50(8), 1692–1710 (2004)MathSciNetCrossRefGoogle Scholar
  3. S. Crozier, New high-spread high-distance interleavers for turbo-codes, in 20th Bienn Symposium on Communications, Kingston, Ontario, Canada, 28–31 May 2000, pp. 3–7Google Scholar
  4. S. Crozier, P. Guinand, High-performance low-memory interleaver banks for turbo-codes, in IEEE 54th Vehicular Technology Conference (VTC), Atlantic City, NJ, USA, vol. 4, 7–11 October 2001, pp. 2394–2398Google Scholar
  5. D. Divsalar, F. Pollara, Turbo codes for PCS applications, in IEEE International Conference on Communications (ICC), Seattle, WA, USA, 18–22 June 1995, pp. 54–59Google Scholar
  6. S. Dolinar, D. Divsalar, Weight distribution of turbo codes using random and nonrandom permutations. TDA Progress Report (Jet Propulsion Laboratory, Pasadena, CA), 15 August 1995, pp. 42–122Google Scholar
  7. G.D. Forney Jr., Geometrically uniform codes. IEEE Trans. Inf. Theory 37(5), 1241–1260 (1991)MathSciNetCrossRefGoogle Scholar
  8. R. Garello, P. Pierleoni, S. Benedetto, Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications. IEEE J. Sel. Areas Commun. 19(5), 800–812 (2001)CrossRefGoogle Scholar
  9. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 4th edn. (Oxford University Press, Oxford, 1975)Google Scholar
  10. C. Heegard, S.B. Wicker, Turbo Coding (Kluwer Academic Publishers, Dordrecht, 1999)CrossRefGoogle Scholar
  11. C.Y. Lee, Some properties of nonbinary error-correcting codes. IRE Trans. Inf. Theory 4(2), 77–82 (1958)MathSciNetCrossRefGoogle Scholar
  12. A. Perotti, S. Benedetto, A new upper bound on the minimum distance of turbo codes. IEEE Trans. Inf. Theory 50(12), 2985–2997 (2004)MathSciNetCrossRefGoogle Scholar
  13. J. Ryu, O.Y. Takeshita, On quadratic inverses for quadratic permutation polynomials over integers rings. IEEE Trans. Inf. Theory 52(3), 1254–1260 (2006)MathSciNetCrossRefGoogle Scholar
  14. O.Y. Takeshita, Permutation polynomial interleavers: an algebraic- geometric perspective. IEEE Trans. Inf. Theory 53(6), 2116–2132 (2007)MathSciNetCrossRefGoogle Scholar
  15. O.Y. Takeshita, D.J. Costello Jr., New deterministic interleaver designs for turbo codes. IEEE Trans. Inf. Theory 46(6), 1988–2006 (2000)CrossRefGoogle Scholar
  16. D. Tarniceriu, L. Trifina, V. Munteanu, About minimum distance for QPP interleavers. Ann. Telecommun. 64(11–12), 745–751 (2009)CrossRefGoogle Scholar
  17. L. Trifina, D. Tarniceriu, Analysis of cubic permutation polynomials for turbo codes. Wirel. Pers. Commun. 69(1), 1–22 (2013)CrossRefGoogle Scholar
  18. L. Trifina, D. Tarniceriu, Improved method for searching interleavers from a certain set using Garello’s method with applications for the LTE standard. Ann. Telecommun. 69(5–6), 251–272 (2014)CrossRefGoogle Scholar
  19. L. Trifina, D. Tarniceriu, On the equivalence of cubic permutation polynomial and ARP interleavers for turbo codes. IEEE Trans. Commun. 65(2), 473–485 (2017)CrossRefGoogle Scholar
  20. L. Trifina, V. Munteanu, H. Balta, New types of interleavers based on the Welch-Costas permutation, in Second European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), Gent, Belgium, 30–31 March 2006a, pp. 107–117Google Scholar
  21. L. Trifina, V. Munteanu, D. Tarniceriu, Welch-Costas interleaver with cyclic shifts on groups of elements. Electron. Lett. 42(24), 1413–1415 (2006b)CrossRefGoogle Scholar
  22. L. Trifina, D. Tarniceriu, V. Munteanu, Improved QPP interleavers for LTE standard, in IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, June 30–July 1 2011, pp. 403–406Google Scholar
  23. H. Zhao, P. Fan, V. Tarokh, On the equivalence of interleavers for turbo codes using quadratic permutation polynomials over integer rings. IEEE Commun. Lett. 14(3), 236–238 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Electronics, Telecommunications and Information TechnologyGheorghe Asachi Technical UniversityIașiRomania

Personalised recommendations