Parallel Turbo Decoding for Permutation Polynomial Interleavers

  • Lucian TrifinaEmail author
  • Daniela Tarniceriu
Part of the Signals and Communication Technology book series (SCT)


In this chapter the capability of PP-based interleavers to be used for parallel turbo decoding is investigated. Maximum contention-free property of any degree PP interleavers, proved by Takeshita (2006), is presented in Sect. 6.2. The new approach of parallel access to the memories by butterfly networks for any degree PPs introduced by Nieminen (2014, 2017) is proved in Sect. 6.3.


Parallel Turbo Decoder Butterfly Network Interleaver Length Control Bits Iterative Decoding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3GPP TS 36.212 V8.3.0, 3rd generation partnership project, Multiplexing and channel coding (Release 8) (2008),
  2. L.R. Bahl et al., Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20(2), 284–287 (1974)Google Scholar
  3. S. Benedetto et al., Design issues on the parallel implementation of versatile, high-speed iterative decoders, in 4rd International Symposium on Turbo Codes and Related Topics, Munich, Germany 3–7 April 2006Google Scholar
  4. C. Berrou et al., Designing good permutations for turbo codes: towards a single model, in IEEE International Conference on Communications (ICC), Paris, France, vol. 1 (2004), pp. 341–345Google Scholar
  5. ETSI EN 301 790 V1.3.1, Digital video broadcasting (DVB); Interaction channel for satellite distribution systems (2003),
  6. A. Giulietti, L. Van der Perre, M. Strum, Parallel turbo coding interleavers: avoiding collisions in accesses to storage elements. Electron. Lett. 38(5), 232–234 (2002)CrossRefGoogle Scholar
  7. J. Kwak, K. Lee, Design of dividable interleaver for parallel decoding in turbo codes. Electron. Lett. 38(22), 1362–1364 (2002)CrossRefGoogle Scholar
  8. D.H. Lawrie, Access and alignment of data in an array processor. IEEE Trans. Comput. 24(12), 1145–1155 (1975)MathSciNetCrossRefGoogle Scholar
  9. E. Nieminen, A contention-free parallel access by butterfly networks for turbo interleavers. IEEE Trans. Inf. Theory 60(1), 237–251 (2014)CrossRefGoogle Scholar
  10. E. Nieminen, On quadratic permutation polynomials, turbo codes, and butterfly networks. IEEE Trans. Inf. Theory 63(9), 5793–5801 (2017)MathSciNetzbMATHGoogle Scholar
  11. A. Nimbalker et al., Inter-window shuffle interleavers for high throughput turbo decoding, in 3rd International Symposium on Turbo Codes and Related Topics, Brest, France, 1–5 September 2003, pp. 355–358Google Scholar
  12. A. Nimbalker et al., Contention-free interleavers, in IEEE International Symposium on Information Theory (ISIT), Chicago, Illinois, USA, June 27–July 2 2004, p. 54Google Scholar
  13. A. Nimbalker et al., Contention-free interleavers for high-throughput turbo decoding. IEEE Trans. Commun. 56(8), 1258–1267 (2008)CrossRefGoogle Scholar
  14. O.Y. Takeshita, Maximum contention-free interleavers and permutation polynomials over integers rings. IEEE Trans. Inf. Theory 52(3), 1249–1253 (2006)MathSciNetCrossRefGoogle Scholar
  15. A. Tarable, S. Benedetto, Mapping interleaving laws to parallel turbo decoder architectures. IEEE Commun. Lett. 8(3), 162–164 (2004)CrossRefGoogle Scholar
  16. A. Tarable, S. Benedetto, Further results on mapping functions, in IEEE ITSOC Information Theory Workshop Coding Complex (ITW), Rotorua, New Zealand, August 28–September 1 2005, pp. 221–225Google Scholar
  17. A. Tarable, S. Benedetto, G. Montorsi, Mapping interleaving laws to parallel turbo and LDPC decoder architectures. IEEE Trans. Inf. Theory 50(9), 2002–2009 (2004)MathSciNetCrossRefGoogle Scholar
  18. L. Trifina, V. Munteanu, Coduri Turbo (Politehnium, Iasi, 2008)Google Scholar
  19. L. Trifina, D. Tarniceriu, Improved method for searching interleavers from a certain set using Garello’s method with applications for the LTE standard. Ann. Telecommun. 69(5–6), 251–272 (2014)CrossRefGoogle Scholar
  20. L. Trifina, D. Tarniceriu, Parallel access by butterfly networks for any degree permutation polynomial and ARP interleavers. Submitted for possible publication (under review) (2017)Google Scholar
  21. L. Trifina, J. Ryu, D. Tarniceriu, Up to five degree permutation polynomial interleavers for short length LTE turbo codes with optimum minimum distance, in IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Electronics, Telecommunications and Information TechnologyGheorghe Asachi Technical UniversityIașiRomania

Personalised recommendations