Skip to main content

Other Wavelet-Based Numerical Methods

  • Chapter
  • First Online:
Wavelets Theory and Its Applications

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 1479 Accesses

Abstract

Systematically, wavelet-based methods for solving PDEs can be separated into the following categories in a very broad manner. Methods based on wavelet expansions: Methods discussed in Sects. 7.4 and 8.2 fall in this category. Wavelet compression can be applied either to the solution [1] (i.e., to generate the adaptive grid as discussed in Sect. 9.1.1), the differential operators [2, 3], or both [4]. Wavelets are used to optimize traditional methods: Methods discussed in Sect. 9.1 fall in this category. Other wavelet methods: There are a few approaches that use wavelets in such a way that does not fit into anyone of previous categories and will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Liandrat, P. Tchamitchian, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Nasa contactor report 187480: Icase report no. 90–83 (1990)

    Google Scholar 

  2. G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. XLIV, 141–183 (1991)

    Google Scholar 

  3. B. Enguist, S. Osher, S. Zhong, Fast wavelet based algorithms for linear evolution equations. SIAM J. Sci. Comput. 15, 755–775 (1994)

    Article  MathSciNet  Google Scholar 

  4. P. Charton, V. Perrier, A pseudo-wavelet scheme for the two-dimensional navier-stokes equation. Comput. Appl. Math. 15, 139–160 (1996)

    MathSciNet  MATH  Google Scholar 

  5. L. Jameson, On the wavelet-optimized finite difference method. ICASE CR-191601 (1994)

    Google Scholar 

  6. L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM J. Sci. Comput. 19, 1980–2013 (1998)

    Article  MathSciNet  Google Scholar 

  7. A. Harten, Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1990)

    Article  MathSciNet  Google Scholar 

  8. A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995)

    Article  MathSciNet  Google Scholar 

  9. A. Harten, Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33, 1205–1256 (1996)

    Article  MathSciNet  Google Scholar 

  10. T. Liu, P. Schwarz, Multiscale modelling of bubbly sytems using wavelet-based mesh adaptation. Book Ser. Lect. Notes Comput. Sci. 3516 (2005)

    Google Scholar 

  11. C. Canuto, A. Tabacco, K. Urban, The wavelet element method part i. construction and analysis. Appl. Comput. Harmon. Anal. 6, 1–5 (1999)

    Article  MathSciNet  Google Scholar 

  12. M. Holmstrom, Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci. Comput. 21, 405–420 (1999)

    Article  MathSciNet  Google Scholar 

  13. M. Holmstrom, J. Walden, Adaptive wavelets methods for hyperbolic PDEs. J. Sci. Comput. 13, 19–49 (1998)

    Article  MathSciNet  Google Scholar 

  14. I. Fatkulin, J.S. Hesthaven, Adaptive high-order finite-difference method for nonlinear wave problems. J. Sci. Comput. 16 (2001)

    Google Scholar 

  15. S. Leonard, M. Terracol, P. Sagaut, A wavelet-based adaptive mesh refinement criterion for large-eddy simulation. J. Turbul. 7, 1–25 (2006)

    Article  MathSciNet  Google Scholar 

  16. L. Zhang, J. Ouyang, X. Wang, X. Zhang, Variational multiscale element-free galerkin’s method for 2D Burgers’ equation. J. Comput. Phys. 229, 7147–7161 (2010)

    Article  MathSciNet  Google Scholar 

  17. M.J. Berger, Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  Google Scholar 

  18. M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 482–512 (1984)

    Article  MathSciNet  Google Scholar 

  19. O.V. Vasilyev, C. Bowman, Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660–693 (2000)

    Article  MathSciNet  Google Scholar 

  20. M. Mehra, N.K.-R. Kevlahan, An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys. 227, 5610–5632 (2008)

    Article  MathSciNet  Google Scholar 

  21. D.L. Donoho, Interpolating wavelet transforms. Technical Report 408, Department of Statistics, Stanford University, 1992

    Google Scholar 

  22. A. Garba, A wavelet collocation method for numerical solution of Burgers’ equation. Technical report, International Center for Theorytical Physics, 1996

    Google Scholar 

  23. B.V. Rathish Kumar, M. Mehra, Wavelet Taylor Galerkin method for Burgers’ equation. BIT 45(3), 543–560 (2005)

    Article  MathSciNet  Google Scholar 

  24. C. Canuto, A. Tabacco, K. urban, The wavelet element method part ii. realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal. 8, 123–165 (2000)

    Google Scholar 

  25. Jian-Gang Han, Wei-Xin Ren, Y. Huang, A wavelet-based stochastic finite element method of thin plate bending. Appl. Math. Model. 31, 181–193 (2007)

    Article  Google Scholar 

  26. A. Harten, Multiresolution representation in unstructured meshes. SIAM J. Numer. Anal. 35, 2128–2146 (1998)

    Article  MathSciNet  Google Scholar 

  27. O. Roussel, K. Schneider, A. Tsigulin, H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic pdes. J. Comput. Phys. 188, 929–932 (2009)

    MathSciNet  MATH  Google Scholar 

  28. M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider, space-time adaptive multiresolution methods for hyperbolic conservation laws:application to compressible euler equations. Appl. Numer. Math. 59(9), 2303–2321 (2009)

    Article  MathSciNet  Google Scholar 

  29. O. Roussel, K. Schneider, Coherent vortex simlulation (CVS) of a 3D compressible turbulent mixing layer, in 6th International Symposium on Turbulence and Shear flow phenom, vol. 2 (2009), pp. 43–74

    Google Scholar 

  30. E. Barcy, S. Mallat, G. Papanicolaou, A wavelet space time adaptive numerical method for partial differential equations. Math. Mod. Numer. Anal. 26(7), 793–834 (1992)

    Article  MathSciNet  Google Scholar 

  31. J.M. Alam, N.K.-R. Kevlahan, O.V. Vasilyev, Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 214, 829–857 (2006)

    Article  MathSciNet  Google Scholar 

  32. M. Bergdorf, G.H. Cottet, P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Model. Simul. 4, 328–357 (2005)

    Article  MathSciNet  Google Scholar 

  33. M. Bergdorf, P. Koumoutsakos, A lagrangian particle-wavelet method. Multiscale Model. Simul. 5, 980–995 (2006)

    Article  MathSciNet  Google Scholar 

  34. S. Reboux, B. Schrader, F. Sbalzarini, A self-organising lagrangian particle method for adaptive-resolution advection-diffusion simulations. J. Comput. Phys. 231, 3623–3646 (2012)

    Article  MathSciNet  Google Scholar 

  35. B.V. Rathish Kumar, M. Mehra, A wavelet Taylor Galerkin method for parabolic and hyperbolic PDEs. Int. J. Comput. Methods 2(1), 75–97 (2005)

    Article  Google Scholar 

  36. B.V. Rathish Kumar, M. Mehra, Time accurate fast wavelet Taylor Galerkin method for partial differential equations. Numer. Methods Partial Differ. Equ. 22, 274–295 (2005)

    Article  MathSciNet  Google Scholar 

  37. M. Mehra, B.V. Rathish, Kumar. Time-accurate solution of advection-diffusion problems by wavelet Taylor Galerkin method. Commun. Numer. Methods Eng. 21, 313–326 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Mehra .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehra, M. (2018). Other Wavelet-Based Numerical Methods. In: Wavelets Theory and Its Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-2595-3_9

Download citation

Publish with us

Policies and ethics