Skip to main content

Impact of Design and Process on Performance of SiC Thermal Devices

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 467 Accesses

Abstract

This chapter describes the influence of the design and fabrication processes on the performance of SiC thermal devices. The chapter first discusses the influence of various substrates on the sensitivity of SiC nanofilms. The impact of doping types and doping levels will be presented. The dependence of the performance of SiC thermal devices on the material morphologies will be mentioned. Finally, this chapter presents the capability of growing SiC nanoscale films and the dependence of the temperature coefficient of resistance on the thickness of SiC films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hall, The effect of expansion mismatch on temperature coefficient of resistance of thin films. Appl. Phys. Lett. 12, 212 (1968)

    Article  Google Scholar 

  2. F. Warkusz, The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 11, 689 (1978)

    Article  CAS  Google Scholar 

  3. B. Verma, S. Sharma, Effect of thermal strains on the temperature coefficient of resistance. Thin Solid Films 5, R44–R46 (1970)

    Article  Google Scholar 

  4. F. Warkusz, Electrical and mechanical properties of thin metal films: size effects. Prog. Surf. Sci. 10, 287–382 (1980)

    Article  CAS  Google Scholar 

  5. A. Singh, Grain-size dependence of temperature coefficient of resistance of polycrystalline metal films. Proc. IEEE 61, 1653–1654 (1973)

    Article  Google Scholar 

  6. T. Dinh, D.V. Dao, H.-P. Phan, L. Wang, A. Qamar, N.-T. Nguyen et al., Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8, 061303 (2015)

    Article  Google Scholar 

  7. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv. 5, 106083–106086 (2015)

    Article  CAS  Google Scholar 

  8. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Fujii, T. Namazu et al., High thermosensitivity of silicon nanowires induced by amorphization. Mater. Lett. 177, 80–84 (2016)

    Article  CAS  Google Scholar 

  9. H.-P. Phan, T. Dinh, T. Kozeki, A. Qamar, T. Namazu, S. Dimitrijev et al., Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci. Rep. 6 (2016)

    Google Scholar 

  10. T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)

    Article  Google Scholar 

  11. K. Eto, H. Suo, T. Kato, H. Okumura, Growth of P-type 4H–SiC single crystals by physical vapor transport using aluminum and nitrogen co-doping. J. Cryst. Growth 470, 154–158 (2017)

    Article  CAS  Google Scholar 

  12. T. Kimoto, A. Itoh, H. Matsunami, Step bunching in chemical vapor deposition of 6H–and 4H–SiC on vicinal SiC (0001) faces. Appl. Phys. Lett. 66, 3645–3647 (1995)

    Article  CAS  Google Scholar 

  13. Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio et al., Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H–SiC Schottky diodes. Appl. Phys. Lett. 76, 2725–2727 (2000)

    Article  CAS  Google Scholar 

  14. O. Madelung, Semiconductors—Basic Data (Springer Science & Business Media, 2012)

    Google Scholar 

  15. A.G. Milnes, Deep Impurities in Semiconductors (1973)

    Google Scholar 

  16. E.M. Conwell, Properties of silicon and germanium. Proc. IRE 40, 1327–1337 (1952)

    Article  CAS  Google Scholar 

  17. S. Sze, J. Irvin, Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid-State Electron. 11, 599–602 (1968)

    Article  CAS  Google Scholar 

  18. T. Kimoto, A. Itoh, H. Matsunami, S. Sridhara, L. Clemen, R. Devaty et al., Nitrogen donors and deep levels in high-quality 4H–SiC epilayers grown by chemical vapor deposition. Appl. Phys. Lett. 67, 2833–2835 (1995)

    Article  CAS  Google Scholar 

  19. J. Bluet, J. Pernot, J. Camassel, S. Contreras, J. Robert, J. Michaud et al., Activation of aluminum implanted at high doses in 4H–SiC. J. Appl. Phys. 88, 1971–1977 (2000)

    Article  CAS  Google Scholar 

  20. Y. Gaoa, S. Soloviev, T. Sudarshan, Investigation of boron diffusion in 6H-SiC. Appl. Phys. Lett. 83 (2003)

    Article  CAS  Google Scholar 

  21. W. Götz, A. Schöner, G. Pensl, W. Suttrop, W. Choyke, R. Stein et al., Nitrogen donors in 4H-silicon carbide. J. Appl. Phys. 73, 3332–3338 (1993)

    Article  Google Scholar 

  22. W. Hartung, M. Rasp, D. Hofmann, A. Winnacker, Analysis of electronic levels in SiC: V, N, Al powders and crystals using thermally stimulated luminescence. Mater. Sci. Eng., B 61, 102–106 (1999)

    Article  Google Scholar 

  23. J. Pernot, S. Contreras, J. Camassel, J. Robert, W. Zawadzki, E. Neyret et al., Free electron density and mobility in high-quality 4H–SiC. Appl. Phys. Lett. 77, 4359–4361 (2000)

    Article  CAS  Google Scholar 

  24. H. Iwata, K.M. Itoh, Donor and acceptor concentration dependence of the electron Hall mobility and the Hall scattering factor in n-type 4H–and 6H–SiC. J. Appl. Phys. 89, 6228–6234 (2001)

    Article  CAS  Google Scholar 

  25. P. Wellmann, S. Bushevoy, R. Weingärtner, Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements. Mater. Sci. Eng., B 80, 352–356 (2001)

    Article  Google Scholar 

  26. H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama et al., Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H-SiC epilayers. J. Appl. Phys. 96, 2708–2715 (2004)

    Article  CAS  Google Scholar 

  27. L. Marsal, J. Pallares, X. Correig, A. Orpella, D. Bardés, R. Alcubilla, Analysis of conduction mechanisms in annealed n-Si 1 − x C x: H/p-crystalline Si heterojunction diodes for different doping concentrations. J. Appl. Phys. 85, 1216–1221 (1999)

    Article  CAS  Google Scholar 

  28. A. Kovalevskii, A. Dolbik, S. Voitekh, Effect of doping on the temperature coefficient of resistance of polysilicon films. Russ. Microlectron. 36, 153–158 (2007)

    Article  CAS  Google Scholar 

  29. H. Latha, A. Udayakumar, V.S. Prasad, Effect of Nitrogen Doping on the Electrical Properties of 3C-SiC Thin Films for High-Temperature Sensors Applications. Acta Metall. Sinica (Engl. Lett.) 27, 168–174 (2014)

    Article  CAS  Google Scholar 

  30. K. Nishi, A. Ikeda, D. Marui, H. Ikenoue, T. Asano, n-and p-Type Doping of 4H-SiC by wet-chemical laser processing, in Materials Science Forum (2014), pp. 645–648

    Article  CAS  Google Scholar 

  31. J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type beta-SiC as a piezoresistor. IEEE Trans. Electron Devices 40, 1093–1099 (1993)

    Article  CAS  Google Scholar 

  32. J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41, 661–665 (1994)

    Article  Google Scholar 

  33. R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n-and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45, 785–790 (1998)

    Article  CAS  Google Scholar 

  34. H.P. Klug, L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, in X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn, ed. by Harold P. Klug, Leroy E. Alexander, (Wiley-VCH, May 1974), p. 992. ISBN 0-471-49369-4

    Google Scholar 

  35. C.-M. Ho, Y.-C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998)

    Article  Google Scholar 

  36. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594–1609 (1998)

    Article  CAS  Google Scholar 

  37. M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)

    Article  Google Scholar 

  38. J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS, and Smart Devices, vol. 1 (Wiley Online Library, 2001)

    Google Scholar 

  39. J.W. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115 (2001)

    Article  Google Scholar 

  40. J.W. Gardner, V.K. Varadan, Microsensors, MEMS and Smart Devices (Wiley Inc, London, 2001)

    Book  Google Scholar 

  41. G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley, 2004)

    Google Scholar 

  42. Y. Zhu, H.D. Espinosa, Effect of temperature on capacitive RF MEMS switch performance—a coupled-field analysis. J. Micromech. Microeng. 14, 1270 (2004)

    Article  Google Scholar 

  43. G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. Kim, T.K. Hsiai, MEMS shear stress sensors for microcirculation. Sens. Actuators, A 118, 25–32 (2005)

    Article  CAS  Google Scholar 

  44. A. Koşar, Y. Peles, Thermal-hydraulic performance of MEMS-based pin fin heat sink. J. Heat Transfer 128, 121–131 (2006)

    Article  Google Scholar 

  45. V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D Appl. Phys. 40, 6386 (2007)

    Article  CAS  Google Scholar 

  46. D. Barrett, R. Campbell, Electron mobility measurements in SiC polytypes. J. Appl. Phys. 38, 53–55 (1967)

    Article  CAS  Google Scholar 

  47. K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, S. Gonda, High-temperature electrical properties of 3C-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 45, 72–73 (1984)

    Article  CAS  Google Scholar 

  48. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, S. Yoshida, Temperature dependence of electrical properties of n-and p-type 3C-SiC. J. Appl. Phys. 61, 599–603 (1987)

    Article  CAS  Google Scholar 

  49. E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)

    Article  Google Scholar 

  50. A. Singh, Film thickness and grain size diameter dependence on temperature coefficient of resistance of thin metal films. J. Appl. Phys. 45, 1908–1909 (1974)

    Article  Google Scholar 

  51. J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975)

    Article  CAS  Google Scholar 

  52. J. Pernot, W. Zawadzki, S. Contreras, J. Robert, E. Neyret, L. Di Cioccio, Electrical transport in n-type 4H silicon carbide. J. Appl. Phys. 90, 1869–1878 (2001)

    Article  CAS  Google Scholar 

  53. E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators, A 83, 167–171 (2000)

    Article  Google Scholar 

  54. T. Dinh, H.-P. Phan, D.V. Dao, P. Woodfield, A. Qamar, N.-T. Nguyen, Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 3, 8776–8779 (2015)

    Article  CAS  Google Scholar 

  55. R. Street, Hydrogenated Amorphous Silicon (Cambridge University, Cambridge, 1991)

    Google Scholar 

  56. P. Fenz, H. Muller, H. Overhof, P. Thomas, Activated transport in amorphous semiconductors. II. Interpretation of experimental data. J. Phys. C: Solid State Phys. 18, 3191 (1985)

    Article  CAS  Google Scholar 

  57. T. Abtew, M. Zhang, D. Drabold, Ab initio estimate of temperature dependence of electrical conductivity in a model amorphous material: Hydrogenated amorphous silicon. Phys. Rev. B 76, 045212 (2007)

    Article  Google Scholar 

  58. M.-L. Zhang, D.A. Drabold, Temperature Coefficient of Resistivity in Amorphous Semiconductors. arXiv preprint arXiv:1112.2169, (2011)

  59. S. Baranovski, Charge Transport in Disordered Solids with Applications in Electronics, vol. 17 (Wiley, 2006)

    Google Scholar 

  60. H.S. Jha, P. Agarwal, Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique. J. Mater. Sci.: Mater. Electron. 26, 2844–2850 (2015)

    CAS  Google Scholar 

  61. N.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films. IEEE Trans. Electron Devices 30, 137–149 (1983)

    Article  Google Scholar 

  62. D. Petkovic, D. Mitic, Effects of grain-boundary trapping-state energy distribution on the Fermi level position in thin polysilicon films, in Proceedings of 20th International Conference on Microelectronics, 1995, pp. 145–148

    Google Scholar 

  63. F. Lacy, Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Res. Lett. 6, 1 (2011)

    Article  Google Scholar 

  64. M.I. Lei, Silicon Carbide High Temperature Thermoelectric Flow Sensor (Case Western Reserve University, 2011)

    Google Scholar 

  65. S. Noh, J. Seo, E. Lee, The fabrication by using surface MEMS of 3C-SiC micro-heaters and RTD sensors and their resultant properties. Trans. Electr. Electron. Mater 10, 131–134 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Impact of Design and Process on Performance of SiC Thermal Devices. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_5

Download citation

Publish with us

Policies and ethics