Skip to main content

Desirable Features for High-Temperature SiC Sensors

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

There are several parameters representing the detection capability and efficiency of SiC sensors towards practical applications such as temperature detectors, flow sensors, convective-based accelerometers and gyroscopes. This chapter presents a number of desirable parameters for SiC thermal sensors at high temperatures. These important features include, but are not limited to, the sensitivity, response time and linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D. V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)

    Google Scholar 

  2. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv. 5, 106083–106086 (2015)

    Article  CAS  Google Scholar 

  3. K. Ohe, Y. Naito, A new resistor having an anomalously large positive temperature coefficient. Jpn. J. Appl. Phys. 10, 99 (1971)

    Article  CAS  Google Scholar 

  4. J. Bahari, J.D. Jones, A.M. Leung, Sensitivity improvement of micromachined convective accelerometers. J. Microelectromech. Syst. 21, 646–655 (2012)

    Article  CAS  Google Scholar 

  5. V.T. Dau, D.V. Dao, T. Shiozawa, S. Sugiyama, Simulation and fabrication of a convective gyroscope. IEEE Sens. J. 8, 1530–1538 (2008)

    Article  Google Scholar 

  6. V.T. Dau, T. Yamada, D.V. Dao, B.T. Tung, K. Hata, S. Sugiyama, Integrated CNTs thin film for MEMS mechanical sensors. Microelectron. J. 41, 860–864 (2010)

    Article  CAS  Google Scholar 

  7. V.T. Dau, B.T. Tung, T.X. Dinh, D.V. Dao, T. Yamada, K. Hata et al., A micromirror with CNTs hinge fabricated by the integration of CNTs film into a MEMS actuator. J. Micromech. Microeng. 23, 075024 (2013)

    Article  Google Scholar 

  8. A. Vatani, P.L. Woodfield, T. Dinh, H.-P. Phan, N.-T. Nguyen, D.V. Dao, Degraded boiling heat transfer from hotwire in ferrofluid due to particle deposition. Appl. Therm. Eng. (2018)

    Google Scholar 

  9. V.T. Dau, D.V. Dao, T. Shiozawa, H. Kumagai, S. Sugiyama, Development of a dual-axis thermal convective gas gyroscope. J. Micromech. Microeng. 16, 1301 (2006)

    Article  CAS  Google Scholar 

  10. V.T. Dau, D.V. Dao, S. Sugiyama, A 2-DOF convective micro accelerometer with a low thermal stress sensing element, in Based on work presented at IEEE sensor 2006: the 5th IEEE conference on sensors, Daegu, Korea, 22–25 Oct 2006. Smart Mater. Struct. 16, 2308 (2007)

    Google Scholar 

  11. D.V. Dao, V.T. Dau, T. Shiozawa, S. Sugiyama, Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element. J. Microelectromech. Syst. 16, 950 (2007)

    Article  Google Scholar 

  12. A.M. Leung, J. Jones, E. Czyzewska, J. Chen, M. Pascal, Micromachined accelerometer with no proof mass, in International Electron Devices Meeting, 1997. IEDM ‘97. Technical Digest, 1997, pp. 899–902

    Google Scholar 

  13. J.T. Kuo, L. Yu, E. Meng, Micromachined thermal flow sensors—a review. Micromachines 3, 550–573 (2012)

    Article  Google Scholar 

  14. K. Wasa, T. Tohda, Y. Kasahara, S. Hayakawa, Highly-reliable temperature sensor using rf-sputtered SiC thin film. Rev. Sci. Instrum. 50, 1084–1088 (1979)

    Article  CAS  Google Scholar 

  15. T. Nagai, K. Yamamoto, I. Kobayashi, Rapid response SiC thin-film thermistor. Rev. Sci. Instrum. 55, 1163–1165 (1984)

    Article  CAS  Google Scholar 

  16. K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, S. Gonda, High-temperature electrical properties of 3C–SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 45, 72–73 (1984)

    Article  CAS  Google Scholar 

  17. T. Nagai, M. Itoh, SiC thin-film thermistors. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    Article  CAS  Google Scholar 

  18. T. Dinh, D.V. Dao, H.-P. Phan, L. Wang, A. Qamar, N.-T. Nguyen et al., Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8, 061303 (2015)

    Article  Google Scholar 

  19. A.R.M. Foisal, H.-P. Phan, T. Kozeki, T. Dinh, K.N. Tuan, A. Qamar et al., 3C–SiC on glass: an ideal platform for temperature sensors under visible light illumination. RSC Adv. 6, 87124–87127 (2016)

    Article  Google Scholar 

  20. T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C–SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)

    Article  Google Scholar 

  21. E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)

    Article  Google Scholar 

  22. E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators A Phys. 83, 167–171 (2000)

    Article  Google Scholar 

  23. N. Boltovets, V. Kholevchuk, R. Konakova, Y.Y. Kudryk, P. Lytvyn, V. Milenin et al., A silicon carbide thermistor. Semicond. Phys. Quantum Electron. Optoelectron. 9, 67–70 (2006)

    CAS  Google Scholar 

  24. V. Balakrishnan, H.-P. Phan, T. Dinh, D.V. Dao, N.-T. Nguyen, Thermal flow sensors for harsh environments. Sensors 17, 2061 (2017)

    Article  Google Scholar 

  25. V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sens. Actuators A Phys. (2018)

    Google Scholar 

  26. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26, 966–986 (2017)

    Article  Google Scholar 

  27. E. Meng, P.-Y. Li, Y.-C. Tai, A biocompatible Parylene thermal flow sensing array. Sens. Actuators A Phys. 144, 18–28 (2008)

    Article  CAS  Google Scholar 

  28. C. Chen, Evaluation of resistance–temperature calibration equations for NTC thermistors. Measurement 42, 1103–1111 (2009)

    Article  Google Scholar 

  29. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, Hoboken, 2006)

    Book  Google Scholar 

  30. P. Yih, J. Li, A. Steckl, SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition. IEEE Trans. Electron Devices 41, 281–287 (1994)

    Article  CAS  Google Scholar 

  31. N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C. Appl. Phys. Lett. 104, 073504 (2014)

    Article  Google Scholar 

  32. S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H–SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)

    Article  CAS  Google Scholar 

  33. S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)

    Article  CAS  Google Scholar 

  34. S. Rao, G. Pangallo, F.G. Della Corte, 4H–SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  35. S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H–SiC PIN diode as high temperature multifunction sensor. Mater. Sci. Forum 630–633 (2017)

    Google Scholar 

  36. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)

    Google Scholar 

  37. T. Dinh, H.-P. Phan, D.V. Dao, P. Woodfield, A. Qamar, N.-T. Nguyen, Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 3, 8776–8779 (2015)

    Article  CAS  Google Scholar 

  38. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Fujii, T. Namazu et al., High thermosensitivity of silicon nanowires induced by amorphization. Mater. Lett. 177, 80–84 (2016)

    Article  CAS  Google Scholar 

  39. T. Neda, K. Nakamura, T. Takumi, A polysilicon flow sensor for gas flow meters. Sens. Actuators A Phys. 54, 626–631 (1996)

    Article  CAS  Google Scholar 

  40. C. Lyons, A. Friedberger, W. Welser, G. Muller, G. Krotz, R. Kassing, A high-speed mass flow sensor with heated silicon carbide bridges, in Proceedings MEMS 98. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, 1998, pp. 356–360

    Google Scholar 

  41. R. Ahrens, K. Schlote-Holubek, A micro flow sensor from a polymer for gases and liquids. J. Micromech. Microeng. 19, 074006 (2009)

    Article  Google Scholar 

  42. J.-G. Lee, M.I. Lei, S.-P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sens. Sci. Technol. 18, 147–153 (2009)

    Article  Google Scholar 

  43. P. Bruschi, M. Dei, M. Piotto, A low-power 2-D wind sensor based on integrated flow meters. IEEE Sens. J. 9, 1688–1696 (2009)

    Article  Google Scholar 

  44. M.I. Lei, Silicon Carbide High Temperature Thermoelectric Flow Sensor (Case Western Reserve University, 2011)

    Google Scholar 

  45. S. Issa, H. Sturm, W. Lang, Modeling of the response time of thermal flow sensors. Micromachines 2, 385–393 (2011)

    Article  Google Scholar 

  46. C. Sosna, T. Walter, W. Lang, Response time of thermal flow sensors with air as fluid. Sens. Actuators A Phys. 172, 15–20 (2011)

    Article  CAS  Google Scholar 

  47. H. Berthet, J. Jundt, J. Durivault, B. Mercier, D. Angelescu, Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab Chip 11, 215–223 (2011)

    Article  CAS  Google Scholar 

  48. A.S. Cubukcu, E. Zernickel, U. Buerklin, G.A. Urban, A 2D thermal flow sensor with sub-mW power consumption. Sens. Actuators A Phys. 163, 449–456 (2010)

    Article  CAS  Google Scholar 

  49. X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017)

    Article  Google Scholar 

  50. J.W. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115 (2001)

    Article  Google Scholar 

  51. F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, A. Boyer, Design of a micromachined thermal accelerometer: thermal simulation and experimental results. Microelectron. J. 34, 275–280 (2003)

    Article  CAS  Google Scholar 

  52. G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (John Wiley & Sons, Hoboken, 2004)

    Google Scholar 

  53. S.-H. Tsang, A.H. Ma, K.S. Karim, A. Parameswaran, A.M. Leung, Monolithically fabricated polymermems 3-axis thermal accelerometers designed for automated wirebonder assembly, in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008, 2008, pp. 880–883

    Google Scholar 

  54. T.X.D. Van Thanh Dau, D.V. Dao, S. Sugiyama, Design and simulation of a novel 3-DOF Mems Convective Gyrosope. IEEJ Trans. Sens. Micromach. 128, 219–224 (2008)

    Article  Google Scholar 

  55. P.R. Gray, P.J. Hurst, R.G. Meyer, S.H. Lewis, Analysis and Design of Analog Integrated Circuits (John Wiley & Sons, New York, 2008)

    Google Scholar 

  56. A. Singh, Film thickness and grain size diameter dependence on temperature coefficient of resistance of thin metal films. J. Appl. Phys. 45, 1908–1909 (1974)

    Article  Google Scholar 

  57. F. Lacy, Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Res. Lett. 6, 1 (2011)

    Article  Google Scholar 

  58. F. Lacy, Using nanometer platinum films as temperature sensors (constraints from experimental, mathematical, and finite-element analysis). IEEE Sens. J. 9, 1111–1117 (2009)

    Article  CAS  Google Scholar 

  59. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Desirable Features for High-Temperature SiC Sensors. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_3

Download citation

Publish with us

Policies and ethics