Skip to main content

Development of Arsenic Removal Technology from Drinking Water in Developing Countries

  • Chapter
  • First Online:
Arsenic Contamination in Asia
  • 602 Accesses

Abstract

At the global scale, drinking arsenic-contaminated groundwater is the most common way for people exposed to arsenic. A number of developing countries have serious arsenic contamination. And thus, developing technologies that could remove arsenic from drinking water has become a major focus of researchers. For developing countries, the technologies applied for arsenic removal are most given consideration of not only effectiveness but also the cost-effectiveness. In this chapter, we reviewed the methods that could be used for arsenic removal from drinking water. It includes coagulation–flocculation, adsorption, membrane technology, oxidation, ion exchange, phytoremediation, and electrokinetics. Of them, the coagulation–flocculation and adsorption were relatively cost-effective and used more often in developing countries. Additionally, we introduced the methods of arsenic removal in drinking water in China and the experience from our group, including a series of research and development of adsorbent material development that could be effective in removing arsenic from drinking water. We hoped that the chapter could provide basic information for researchers in this field and be helpful for them to develop much more effective and cost-effective arsenic removal technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf. 2015;112:247–70.

    Article  CAS  PubMed  Google Scholar 

  2. Kabir F, Chowdhury S. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs. Environ Sci Pollut Res Int. 2017;24(31):24102–20.

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborti D, Sengupta MK, Rahman MM, et al. Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. J Environ Monit. 2004;6(6):74N–83N.

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhury S, Mazumder MA, Al-Attas O, Husain T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ. 2016;569-570:476–88.

    Article  CAS  PubMed  Google Scholar 

  5. Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ. 2000;78(9):1093–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Argos M, Kalra T, Rathouz PJ, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet. 2010;376(9737):252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li G, Sun GX, Williams PN, Nunes L, Zhu YG. Inorganic arsenic in Chinese food and its cancer risk. Environ Int. 2011;37(7):1219–25.

    Article  CAS  PubMed  Google Scholar 

  8. Sohel N, Persson LA, Rahman M, et al. Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology. 2009;20(6):824–30.

    Article  PubMed  Google Scholar 

  9. Sanchez TR, Levy D, Shahriar MH, et al. Provision of well-water treatment units to 600 households in Bangladesh: a longitudinal analysis of urinary arsenic indicates fading utility. Sci Total Environ. 2016;563-564:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan T, Luo QF, Hu JY, Ong SL, Ng WJ. A study on arsenic removal from household drinking water. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(9):1731–44.

    Article  PubMed  CAS  Google Scholar 

  11. Song S, Lopez-Valdivieso A, Hernandez-Campos DJ, Peng C, Monroy-Fernandez MG, Razo-Soto I. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res. 2006;40(2):364–72.

    Article  CAS  PubMed  Google Scholar 

  12. Andrianisa HA, Ito A, Sasaki A, Aizawa J, Umita T. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride. Water Res. 2008;42(19):4809–17.

    Article  CAS  PubMed  Google Scholar 

  13. Lakshmanan D, Clifford DA, Samanta G. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res. 2010;44(19):5641–52.

    Article  CAS  PubMed  Google Scholar 

  14. Wu C, Huang L, Xue SG, et al. Arsenic sorption by red mud-modified biochar produced from rice straw. Environ Sci Pollut Res Int. 2017;24(22):18168–78.

    Article  CAS  PubMed  Google Scholar 

  15. Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater. 2006;137(1):464–79.

    Article  CAS  PubMed  Google Scholar 

  16. Aziz Z, Bostick BC, Zheng Y, et al. Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Appl Geochem. 2017;77:167–77.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Wu YN, Li Z, Zhu M, Li F. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci Technol. 2014;70(8):1391–7.

    Article  CAS  PubMed  Google Scholar 

  18. Grandesso F, Guindo O, Woi Messe L, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin-piperaquine and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger. Malar J. 2018;17(1):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jara M, Berg M, Caljon G, et al. Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLoS One. 2017;12(7):e0180532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang QL, Lin YC, Chen X, Gao NY. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J Hazard Mater. 2007;148(3):671–8.

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira DQ, Goncalves M, Oliveira LC, Guilherme LR. Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. J Hazard Mater. 2008;151(1):280–4.

    Article  CAS  PubMed  Google Scholar 

  22. Gimenez J, de Pablo J, Martinez M, Rovira M, Valderrama C. Reactive transport of arsenic(III) and arsenic(V) on natural hematite: experimental and modeling. J Colloid Interface Sci. 2010;348(1):293–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fontana A, Campanaro S, Treu L, et al. Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. Water Res. 2018;134:181–91.

    Article  CAS  PubMed  Google Scholar 

  24. Shevade S, Ford RG. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 2004;38(14–15):3197–204.

    Article  CAS  PubMed  Google Scholar 

  25. Ashraf A, Bibi I, Niazi NK, et al. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediation. 2017;19(7):605–13.

    Article  CAS  PubMed  Google Scholar 

  26. Jang M, Chen W, Cannon FS. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ Sci Technol. 2008;42(9):3369–74.

    Article  CAS  PubMed  Google Scholar 

  27. Ghajar A, Khoaie-Ardakani MR, Shahmoradi Z, et al. l-Carnosine as an add-on to risperidone for treatment of negative symptoms in patients with stable schizophrenia: a double-blind, randomized placebo-controlled trial. Psychiatry Res. 2018;262:94–101.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Yang M, Dou XM, He H, Wang DS. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environ Sci Technol. 2005;39(18):7246–53.

    Article  CAS  PubMed  Google Scholar 

  29. Jebelli MA, Maleki A, Amoozegar MA, et al. Isolation and identification of the native population bacteria for bioremediation of high levels of arsenic from water resources. J Environ Manag. 2018;212:39–45.

    Article  CAS  Google Scholar 

  30. Jing F, Pan M, Chen J. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Environ Sci Pollut Res Int. 2018;25(12):11493–504.

    Article  CAS  PubMed  Google Scholar 

  31. Giles DE, Mohapatra M, Issa TB, Anand S, Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manag. 2011;92(12):3011–22.

    Article  CAS  Google Scholar 

  32. Pinto TM, Samorinha C, Tendais I, Silva S, Figueiredo B. Antenatal paternal adjustment and paternal attitudes after infertility treatment. Hum Reprod. 2018;33(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  33. Lin TF, Wu JK. Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res. 2001;35(8):2049–57.

    Article  CAS  PubMed  Google Scholar 

  34. Rajasinghe HA, Miller LE, Krajcer Z. Early outcomes with fast-track EVAR in teaching and nonteaching hospitals. Ann Vasc Surg. 2018;49:134–43.

    Article  PubMed  Google Scholar 

  35. Patra AK, Dutta A, Bhaumik A. Self-assembled mesoporous gamma-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. J Hazard Mater. 2012;201-202:170–7.

    Article  CAS  PubMed  Google Scholar 

  36. Googerdchian F, Moheb A, Emadi R, Asgari M. Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. J Hazard Mater. 2018;349:186–94.

    Article  CAS  PubMed  Google Scholar 

  37. Di Iorgi N, Mittelman SD, Gilsanz V. Differential effect of marrow adiposity and visceral and subcutaneous fat on cardiovascular risk in young, healthy adults. Int J Obes (2005). 2008;32(12):1854–60.

    Article  Google Scholar 

  38. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.

    Article  CAS  PubMed  Google Scholar 

  39. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002;17(5):517–68.

    Article  CAS  Google Scholar 

  40. Dong L, Zinin PV, Cowen JP, Ming LC. Iron coated pottery granules for arsenic removal from drinking water. J Hazard Mater. 2009;168(2–3):626–32.

    Article  CAS  PubMed  Google Scholar 

  41. Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  42. Farrell J, Wang J, O'Day P, Conklin M. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ Sci Technol. 2001;35(10):2026–32.

    Article  CAS  PubMed  Google Scholar 

  43. Sun F, Osseo-Asare KA, Chen Y, Dempsey BA. Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI. J Hazard Mater. 2011;196:311–7.

    Article  CAS  PubMed  Google Scholar 

  44. Leupin OX, Hug SJ. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005;39(9):1729–40.

    Article  CAS  PubMed  Google Scholar 

  45. Klas S, Kirk DW. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. J Hazard Mater. 2013;252-253:77–82.

    Article  CAS  PubMed  Google Scholar 

  46. Katsoyiannis IA, Ruettimann T, Hug SJ. pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ Sci Technol. 2008;42(19):7424–30.

    Article  CAS  PubMed  Google Scholar 

  47. Tyruvola K, Nikolaidis NP, Veranis N, Kallithrakas-Kontos N, Koulouridakis PE. Arsenic removal from geothermal waters with zero-valent iron—effect of temperature, phosphate and nitrate. Water Res. 2006;40(12):2375–86.

    Article  PubMed  CAS  Google Scholar 

  48. Biterna M, Antonoglou L, Lazou E, Voutsa D. Arsenite removal from waters by zero valent iron: batch and column tests. Chemosphere. 2010;78(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  49. Biterna M, Arditsoglou A, Tsikouras E, Voutsa D. Arsenate removal by zero valent iron: batch and column tests. J Hazard Mater. 2007;149(3):548–52.

    Article  CAS  PubMed  Google Scholar 

  50. Bang S, Johnson MD, Korfiatis GP, Meng X. Chemical reactions between arsenic and zero-valent iron in water. Water Res. 2005;39(5):763–70.

    Article  CAS  PubMed  Google Scholar 

  51. Bang S, Korfiatis GP, Meng X. Removal of arsenic from water by zero-valent iron. J Hazard Mater. 2005;121(1–3):61–7.

    Article  CAS  PubMed  Google Scholar 

  52. Lien HL, Wilkin RT. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. 2005;59(3):377–86.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu H, Jia Y, Wu X, Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172(2–3):1591–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tanboonchuy V, Grisdanurak N, Liao C-H. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater. 2012;205-206:40–6.

    Article  CAS  PubMed  Google Scholar 

  55. Ludwig RD, Smyth DJA, Blowes DW, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environ Sci Technol. 2009;43(6):1970–6.

    Article  CAS  PubMed  Google Scholar 

  56. Diamadopoulos E, Ioannidis S, Sakellaropoulos GP. As(V) removal from aqueous solutions by fly ash. Water Res. 1993;27(12):1773–7.

    Article  CAS  Google Scholar 

  57. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    Article  PubMed  Google Scholar 

  58. Oh YH, Moon JH, Kim HJ, Kong MH. Visceral-to-subcutaneous fat ratio as a predictor of the multiple metabolic risk factors for subjects with normal waist circumference in Korea. Diabetes Metab Syndr Obes. 2017;10:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rajaković LV. The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Sep Sci Technol. 1992;27(11):1423–33.

    Article  Google Scholar 

  60. Gu Z, Fang J, Deng B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environ Sci Technol. 2005;39(10):3833–43.

    Article  CAS  PubMed  Google Scholar 

  61. Shih M-C. An overview of arsenic removal by pressure-driven membrane processes. Desalination. 2005;172(1):85–97.

    Article  CAS  Google Scholar 

  62. Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination. 2007;217(1):139–66.

    Article  CAS  Google Scholar 

  63. Han B, Runnells T, Zimbron J, Wickramasinghe R. Arsenic removal from drinking water by flocculation and microfiltration. Desalination. 2002;145(1):293–8.

    Article  CAS  Google Scholar 

  64. Ge W, Parvez F, Wu F, et al. Association between anthropometric measures of obesity and subclinical atherosclerosis in Bangladesh. Atherosclerosis. 2014;232(1):234–41.

    Article  CAS  PubMed  Google Scholar 

  65. Iqbal J, Kim H-J, Yang J-S, Baek K, Yang J-W. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere. 2007;66(5):970–6.

    Article  CAS  PubMed  Google Scholar 

  66. Uddin A, Shamsudduha M, Saunders JA, Lee MK, Ahmed KM, Chowdhury MT. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Appl Geochem. 2011;26(4):470–83.

    Article  CAS  Google Scholar 

  67. Sato Y, Kang M, Kamei T, Magara Y. Performance of nanofiltration for arsenic removal. Water Res. 2002;36(13):3371–7.

    Article  CAS  PubMed  Google Scholar 

  68. Clifford D, Subramonian S, Sorg TJ. Water treatment processes. III. Removing dissolved inorganic contaminants from water. Environ Sci Technol. 1986;20(11):1072–80.

    Article  CAS  Google Scholar 

  69. Ryu J, Monllor-Satoca D, Kim D-h, Yeo J, Choi W. Photooxidation of arsenite under 254 nm Irradiation with a quantum yield higher than unity. Environ Sci Technol. 2013;47(16):9381–7.

    Article  CAS  PubMed  Google Scholar 

  70. Yoon S-H, Lee JH. Oxidation mechanism of As(III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism. Environ Sci Technol. 2005;39(24):9695–701.

    Article  CAS  PubMed  Google Scholar 

  71. Sharma VK, Dutta PK, Ray AK. Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. J Environ Sci Health A. 2007;42(7):997–1004.

    Article  CAS  Google Scholar 

  72. Oehmen A, Viegas R, Velizarov S, Reis MAM, Crespo JG. Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination. 2006;199(1):405–7.

    Article  CAS  Google Scholar 

  73. Lasat MM. Phytoextraction of toxic metals. J Environ Qual. 2002;31:109–20.

    CAS  PubMed  Google Scholar 

  74. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001;409:579.

    Article  CAS  PubMed  Google Scholar 

  75. Yamamura S, Ike M, Fujita M. Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J Biosci Bioeng. 2003;96(5):454–60.

    Article  CAS  PubMed  Google Scholar 

  76. Yu G, Sun D, Zheng Y. Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect. 2007;115(4):636–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun G, Xu Y, Li X, Jin Y, Li B, Sun X. Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in inner Mongolia, China. Environ Health Perspect. 2007;115(4):648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun G, Li X, Pi J, Sun Y, Li B, Jin Y, Xu Y. Current research problems of chronic arsenicosis in China. J Health Popul Nutr. 2006;24(2):176–81.

    PubMed  Google Scholar 

  79. Sun G. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol. 2004;198:268–71.

    Article  CAS  PubMed  Google Scholar 

  80. Yoshida T, Yamauchi H, Sun G. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol. 2004;198(3):243–52.

    Article  CAS  PubMed  Google Scholar 

  81. Yamauchi H, Aminaka Y, Yoshida K, Sun G, Pi J, Waaldes MP. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanine. Toxicol Appl Pharmacol. 2004;198(3):291–6.

    Article  CAS  PubMed  Google Scholar 

  82. Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, Yamauchi H, Itoh K, Yamamoto M, Sun G, Waalkes MP, Kumagai Y. A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate. Free Radic Biol Med. 2003;35(1):102–13.

    Article  CAS  PubMed  Google Scholar 

  83. Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002;10(4):331–6.

    Article  Google Scholar 

  84. Sun G, Hao Y, Zheng Q, Yin Y, Yamauchi H. The distribution of arsenic concentration in water of China and the relation to patients. Fifth international conference on arsenic exposure and health effects, San Diego; 2002;14–18.

    Google Scholar 

  85. Sun G, Liu S, Li B, Li X, Sun X, Guo X, Qian C, Pi J. Current situation of endemic arsenicosis in China. Environ Sci. 2001;8(5):425–34.

    Google Scholar 

  86. Sun G, Pi J, Li B, Guo X, Yamauchi H, Yoshida T. Progresses on researches of endemic arsenism in China: population at risk, intervention actions, and related scientific issues. In: Chappell WR, Abernathy CO, Calderon RL, editors. Arsenic exposure and health effects, vol. IV. Amsterdam: Elsevier; 2001. p. 79–85.

    Google Scholar 

  87. Sun G, Liu J, Luong TV, Sun D, Wang L. Endemic arsenicosis: a clinical diagnostic manual with photo illustration. Bangkok: UNICEF East Asia and Pacific Regional Office; 2004.

    Google Scholar 

  88. Sun G, Li X, Zhou J. Study of using 10% sampling method to identify the high arsenic exposure areas. Chin J Dis Contr Prev. 2003;7(6):480–3. in Chinese

    Google Scholar 

  89. Rodriguez-Lado L, Sun G, Berg M, et al. Groundwater arsenic contamination throughout China. Science (New York, NY). 2013;341(6148):866–8.

    Article  CAS  Google Scholar 

  90. http://www.nsf.org/newsroom/nsf-international-certifies-first-water-filter-pitcher-that-reduces-arsenic. Accessed 3 Mar 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y.F., Wang, D., Li, B., Dong, L., Sun, G. (2019). Development of Arsenic Removal Technology from Drinking Water in Developing Countries. In: Yamauchi, H., Sun, G. (eds) Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2565-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2564-9

  • Online ISBN: 978-981-13-2565-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics