Skip to main content

An Update on Transcriptome Sequencing of Hairy Root Cultures of Medicinally Important Plants

  • Chapter
  • First Online:
Hairy Roots

Abstract

Hairy root cultures induced by Agrobacterium rhizogenes infection have been recognized as promising and attractive alternative source of secondary metabolites owing to several advantageous features like genetic stability, comparable biosynthetic capabilities to the native plant root, and sizable biomass production. Hairy root cultures are reported to produce all major classes of secondary metabolites, such as isoprenoids/or terpenoids, alkaloids, phenolics, and flavonoids. So far, hairy root cultures have been established from a variety of plants providing commercially valuable products, such as artemisinin (Artemisia annua), astragalosides (Astragalus membranaceus), acteoside (Rehmannia glutinosa), centellosides (Centella asiatica), resveratrol (Arachis hypogaea), camptothecin (Camptotheca acuminata), vinblastine, vincristine (Catharanthus roseus), and kutkin, iridoid glycosides (Picrorhiza kurroa). In hairy root cultures, these specialized metabolites are produced via complex network of several distinctive biochemical pathways operating in an integrated manner. However, biochemical pathways and genes involved in production of many phytochemicals have not been completely elucidated. Transcriptome sequencing of hairy root cultures by next-generation sequencing techniques has been proven to be an excellent approach in elucidation of biosynthetic pathways and genes of phytochemical production. Newly emerged next-generation sequencing techniques like Roche/454 and Illumina/Solexa have greatly facilitated sequencing of transcriptome of hairy root cultures. At present, transcriptome sequence datasets of hairy root cultures of only a limited numbers of plants, viz., C. roseus, P. ginseng, A. membranaceus, R. glutinosa, C. asiatica, etc., are available. Thorough analyses of transcriptome sequence datasets of hairy root cultures have unraveled many biosynthetic pathways and genes responsible for the biosynthesis of commercially important phytochemicals. The present chapter provides an up-to-date information of transcriptome sequencing of hairy root cultures of important plants performed by next-generation sequencing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagna F, D’Agostino N, Torchia L, Servili M et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee S, Singh S, Ur Rahman L (2012) Biotransformation studies using hairy root cultures – A review. Biotechnol Adv 30:461–468

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, DiLoreto DS, Zhang Y, Smith C et al (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U et al (2014) Plant genome sequencing – applications for crop improvement. Curr Opin Biotech 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Nuruzzaman M, Xiu H, Huang J et al (2015) Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16:3035–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty D, Rai A, Bhardwaj A, Misra P et al (2015) Comparative transcriptional profiling of contrasting rice genotypes shows expression differences during arsenic stress. The Plant Genome 8:1–14

    Google Scholar 

  • Chaudhary S, Sharma PC (2016) Next generation sequencing-based exploration of genomes and transcriptomes of medicinal plants. Ind J Plant Physiol 21:489–503

    Article  CAS  Google Scholar 

  • Chen S, Luo H (2014) Transcriptome analysis of medicinal plants with next generation sequencing technologies. Encycl Anal Chem: 1–12

    Google Scholar 

  • Chen JF, Dong X, Li Q, Zhou X et al (2013) Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genome 14:857–869

    Article  CAS  Google Scholar 

  • Dicosmo F, Misawa M (1985) Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol 3:318–322

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  CAS  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Sun HX, Xiao H, Cui G et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Goel MK, Mehrotra S, Kukreja AK (2011) Elicitor-induced cellular and molecular events are responsible for productivity enhancement in hairy root cultures: an insight study. Appl Biochem Biotechnol 165:1342–1355

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati P, Rideau M et al (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    Article  CAS  PubMed  Google Scholar 

  • Gurkok T, Turktas M, Parmaksiz I, Unver T (2014) Transcriptome profiling of alkaloid biosynthesis in elicitor induced Opium poppy. Plant Mol Biol Rep 33:673–688

    Article  CAS  Google Scholar 

  • Han XJ, Wang YD, Chen YC et al (2013) Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba. PLoS One 8:e76890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao da C, Ge GB, Xiao PG et al (2011) The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PLoS One 6:e21220

    Article  PubMed  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40:4301–4310

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YY, Jeng MF, Tsai WC, Chung YC et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X) 2-4D motif. Plant J 55:719–733

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi M, Arima T, Shirota O, Sekita S et al (2010) Production of sesquiterpene-type phytoalexins by hairy roots of Hyoscyamus albus co-treated with copper sulfate and methyl jasmonate. Chem Pharm Bull (Tokyo) 58:934–938

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Kim OT, Kim MY, Huh SM, Bai DG et al (2005a) Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica(L.). Urban Plant Cell Rep 24:304–311

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Seong NS, Kim MY, Hwang B (2005b) Isolation and characterization of squalene synthase cDNA from Centella asiatica (L.). Urban J Plant Biol 48:263–269

    Article  CAS  Google Scholar 

  • Kim OT, Lee JW, Bang KH, Kim YC et al (2009) Characterization of a dammarenediol synthase in Centella asiatica (L.). Urban Plant Physiol Biochem 47:998–1002

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Um Y, Jin ML, Chang Y et al (2014) Analysis of expressed sequence tags from Centella asiatica (L.) urban hairy roots elicited by methyl jasmonate to discover genes related to cytochrome P450s and glucosyltransferases. Plant Biotechnol Rep 8:211–220

    Article  Google Scholar 

  • Ku WL, Duggal G, Li Y, Girvan M et al (2012) Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs. PLoS One 7(2):e31969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzma L, Bruchajzer E, Wysokinska H (2009) Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enz Microb Technol 44:406–410

    Article  CAS  Google Scholar 

  • Legrand S, Valot N, Nicole F, Moja S et al (2010) One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene 450:55–62

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun C, Luo HM, Niu YY et al (2010) Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Yao Xue Xue Bao 45:524–529

    CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MH, Yang BR, Cheung WF, Yang KY et al (2015) Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Marioni J, Mason C, Mane S, Stephens M et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy E, O’Connor S (2008) Natural products from plant cell cultures. Prog Drug Res 65:330–370

    Google Scholar 

  • Mehrotra S, Ur Rahman L, Kukreja AK (2010) An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnol Appl Biochem 56:161–172

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma. https://doi.org/10.1007/s00709-015-0761-1

    Article  CAS  PubMed  Google Scholar 

  • Morin R, Bainbridge M, Fejes A, Hirst M et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotech 45:81–94

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Application of new sequencing technologies for transcriptome analysis. Ann Rev Genomics Hum Genet 10:135–151

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors: role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants: recent advances and future perspectives. InTech, Al-Hassa, pp 247–277

    Google Scholar 

  • Namdev AG (2007) Plant cell elicitation for production of secondary metabolites. A review. Pharmacog Rev 11:69–79

    Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Flores H (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Article  Google Scholar 

  • Ramilowski JA, Sawai S, Seki H, Mochida K et al (2013) Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol 54:697–710

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E et al (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Engg Life Sci 13:62–75

    Article  CAS  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar G (2006) Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 1:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Guo L, Liu T, Lin C et al (2017) Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional Chinese medicine model plant. Int J Genomics. https://doi.org/10.1155/2017/9364594

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Negi AS, Ajayakumar PV, Khan SA, Banerjee S (2012) Atropa belladonna hairy roots: orchestration of concurrent oxidation and reduction reactions for biotransformation of carbonyl compounds. Appl Biochem Biotechnol 166:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Kaur R, Chattopahyay SK, Banerjee S (2013) Production of industrially important cosmeceutical and pharmaceutical derivatives of betuligenol by Atropa belladonna hairy root mediated biotransformation. Ind Crop Prod 44:171–175

    Article  CAS  Google Scholar 

  • Stewart FC, Rolf FM, Hall FH (1900) A fruit disease survey of western New York in 1900. NY Agri Exp Stat 191:291–331

    Google Scholar 

  • Sun J, Manmathan H, Sun C, Christie A et al (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Wu KM, Chiang TY, Huang CY et al (2016) Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genomics 17:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuan PA, Chung E, Thwe AA et al (2015) Transcriptional profiling and molecular characterization of astragalosides, calycosin, and calycosin-7-O-β-D-glucoside biosynthesis in the hairy roots of Astragalus membranaceus in response to methyl jasmonate. J Agric Food Chem 63:6231–6240

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Engg Biotechnol 134:55–89

    CAS  Google Scholar 

  • Wang W, Wang Y, Zhang Q et al (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang F, Zhi J, Zhang Z, Wang L et al (2017) Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Front Plant Sci 8:787

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber AP, Weber KL, Carr K et al (2007) Sampling the Arabidopsis transcriptome with massive parallel pyrosequencing. Plant Physiol 144:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Luo S, Zheng Q, Qiu J et al (2015) Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Gene 556:153–162

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Egan AN, Dikow RB, Zimmer EA (2015) Utility of transcriptome sequencing for phylogenetic inference and character evolution. Next-generation sequencing in plant systematics. Koeltz Scientific Books. Regnum Vegetabile 158:51–91

    Google Scholar 

  • Wenping H, Yuan Z, Jie S, Lijun Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Shi M (2008) Ultra high diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biotechnol 78:441–448

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Ji Q, Gao S, Tan H (2015) Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J Exp Bot 66:6259–6271

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Peters RJ, Weirather J, Luo H et al (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961

    Article  CAS  PubMed  Google Scholar 

  • Yamazakib M, Mochida K, Asano T, Nakabayashi R et al (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anticancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54:686–696

    Article  CAS  Google Scholar 

  • Yan H, Yoo MJ, Koh J, Liu L et al (2014) Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. J Proteome Res 13:5751–5766

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wei J, Zhang X (2014) SNP discovery in the transcriptome of white pacific shrimp Litopenaeus vannamei by next generation sequencing. PLoS One 9(1):e87218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang GH, Ma CH, Zhang JJ, Chen JW et al (2015) Transcriptome analysis of Panax vietnamensis var. fuscidiscus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 16:159. https://doi.org/10.1186/s12864-015-1332-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen J, Zhou X, Chen X, Li Q et al (2016) Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica. Plant Biotechnol J 14:2217–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhao S, Tuan PA, Li X, Kim YB et al (2013) Identification of phenyl propanoid biosynthetic genes and phenyl propanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14:802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Gao F, Liu R, Feng J et al (2012) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 13:266–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Corresponding author of this chapter is grateful to Dr. Ashok Kumar Chauhan, Founder President, and Mr. Atul Chauhan, Chancellor, Amity University, Uttar Pradesh, Noida, India, for providing necessary facilities and support. Also, I duly acknowledge SERB, Department of Science and Technology (DST), New Delhi, for providing National Postdoctoral Fellowship to Dr. Gurminder Kaur, who is currently working on transcriptome sequencing of lemongrass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Ganjewala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganjewala, D., Kaur, G., Verma, P.C. (2018). An Update on Transcriptome Sequencing of Hairy Root Cultures of Medicinally Important Plants. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Roots. Springer, Singapore. https://doi.org/10.1007/978-981-13-2562-5_13

Download citation

Publish with us

Policies and ethics