Skip to main content

A VDCC-Based Grounded Passive Element Simulator/Scaling Configuration with Electronic Control

  • Conference paper
  • First Online:
Advances in Signal Processing and Communication

Abstract

In this research paper, a new circuit configuration which can work like a grounded impedance simulator/grounded impedance scaling circuit has been proposed. The proposed circuit can simulate electronically controllable grounded resistance/capacitance/inductance/FDNC and can also work like a grounded impedance multiplier circuit, which can scale the value of arbitrary grounded impedance with an electronically tunable multiplication factor. The presented circuit employs two voltage difference current conveyors along with four grounded passive elements. The employment of grounded passive elements makes this realization eligible for monolithic integration. The proposed circuit does not require any matched passive elements. Behavior of the proposed configuration under nonideal environment is found un-deviated. The mathematical analysis of the proposed configuration has been verified by simulating under PSPICE TSMC 0.18 µm simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford, R.L., Girling, F.E.J.: Active filters and oscillators using simulated inductance. Electron. Lett. 2(2), 481–482 (1966)

    Article  Google Scholar 

  2. Prescott, A.J.: Loss compensated active gyrator using differential input operational amplifier. Electron. Lett. 2(7), 283–284 (1966)

    Article  Google Scholar 

  3. Orchard, H.J., Willson, A.N.: New active gyrator circuits. Electron. Lett. 10(13), 261–262 (1974)

    Article  Google Scholar 

  4. Dutta Roy, S.C.: On operational amplifier simulation of grounded inductance. Archiv fuer Elektronik und Uebertragungstechnik 29, 107–115 (1975)

    Google Scholar 

  5. Senani, R.: Active simulation of inductors using current conveyors. Electron. Lett. 14(15), 483–484 (1976)

    Article  Google Scholar 

  6. Nandi, R.: Novel insensitive lossless inductor simulation through inverse function generation. Electron. Lett. 16(12), 481–482 (1980)

    Article  Google Scholar 

  7. Nandi, R.: Lossless inductor simulation: novel configurations using DVCCS. Electron. Lett. 16(17), 666–667 (1980)

    Article  Google Scholar 

  8. Paul, A.N., Patranabis, D.: Active simulation of grounded inductors using a single current conveyor. IEEE Trans. Circuits Syst. 28(2), 164–165 (1981)

    Article  Google Scholar 

  9. Fabre, A.: Gyrator implementation from commercially available trans-impedance operational amplifiers. Electron. Lett. 28(3), 263–264 (1992)

    Article  Google Scholar 

  10. Arslan, E., Cam, U., Cicekoglu, O.: Novel lossless grounded inductance simulators employing only a single first generation current conveyor. Frequenz J. RF Eng. Telecommun. 57(9–10), 204–206 (2003)

    Google Scholar 

  11. Yuce, E., Minaei, S., Cicekoglu, O.: A novel grounded inductor realization using a minimum number of active and passive components. ETRI J. 27(4), 427–432 (2005)

    Article  Google Scholar 

  12. Yuce, E., Minaei, S., Cicekoglu, O.: Limitations of the simulated inductors based on a single current conveyor. IEEE Trans. Circuits Syst. 53(12), 2860–2867 (2006)

    Article  Google Scholar 

  13. Yuce, E.: Grounded inductor simulators with improved low frequency performances. IEEE Trans. Instrum. Meas. 57(5), 1079–1084 (2008)

    Article  Google Scholar 

  14. Pal, K., Nigam, M.J.: Novel active impedances using current conveyors. J. Active Passive Electron. Dev. 3(1), 29–34 (2008)

    Google Scholar 

  15. Yuce, E., Minaei, S.: A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. 55(1), 254–263 (2008)

    MathSciNet  Google Scholar 

  16. Yuce, E., Minaei, S.: On the realization of simulated inductors with reduced parasitic impedance effects. Circuits Syst. Signal Process. 28(3), 451–465 (2009)

    Article  Google Scholar 

  17. Yuce, E.: Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integr. Circuits Signal Process. 59(1), 77–82 (2009)

    Article  Google Scholar 

  18. Kumar, P., Senani, R.: New grounded simulated inductance circuit using a single PFTFN. Analog Integr. Circuits Signal Process. 62(1), 105–112 (2010)

    Article  Google Scholar 

  19. Ibrahim, M.A, Minaei, S., Yuce, E., Herencsar, N., Koton, J.: Lossless grounded inductance simulation using only one modified dual output DDCC. In: Proceedings of the 34th International Conference on Telecommunications and Signal Processing (TSP2011), Budapest, Hungary, pp. 261–264 (2011)

    Google Scholar 

  20. Kacar, F., Kuntman, H.: CFOA-based lossless and lossy inductance simulators. Radioengineering 20(3), 627–631 (2011)

    Google Scholar 

  21. Metin, B.: Supplementary inductance simulator topologies employing single DXCCII. Radioengineering 20(3), 614–618 (2011)

    Google Scholar 

  22. Myderrizi, I., Minaei, S., Yuce, E.: DXCCII based grounded inductance simulators and filter applications. Microelectron. J. 42(9), 1074–1081 (2011)

    Article  Google Scholar 

  23. Geiger, R.L., Sanchez-Sinencio, E.: Active filter design using operational transconductance amplifier: a tutorial. IEEE Circuits Dev. Mag. 1(2), 20–32 (1985)

    Article  Google Scholar 

  24. Ibrahim, M.A., Minaei, S., Yuce, E., Herencsar, N., Koton, J.: Lossy/lossless floating/grounded inductance simulator using one DDCC. Radioengineering 21(1), 2–10 (2012)

    Google Scholar 

  25. Gupta, A., Senani, A.R., Bhaskar, D.R., Singh, A.K.: OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst. Signal Process. 31(2), 489–499 (2012)

    Article  MathSciNet  Google Scholar 

  26. Prasad, D., Bhaskar, D.R.: Grounded and floating inductance simulation circuits using VDTAs. Circuits Syst. 3(4), 342–347 (2012)

    Article  Google Scholar 

  27. Yesil, A., Kacar, F., Gurkan, K.: Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. Int. J. Electron. Commun. (AEU) 68(2), 143–150 (2014)

    Article  Google Scholar 

  28. Kacar, F., Yesila, A., Minaei, S., Kuntmanca, H.: Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int. J. Electron. Commun. (AEÜ) 68, 73–78 (2014)

    Article  Google Scholar 

  29. Prasad, D., Bhaskar, D.R., Srivastava, M.: New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electron. J. 18(2), 81–88 (2014)

    Google Scholar 

  30. Srivastava, M., Prasad, D.: VDCC based dual-mode quadrature sinusoidal oscillator with current/voltage outputs at appropriate impedance level. Adv. Electr. Electron. Eng. (Czech Republic) 14(2), 168–177 (2016)

    Google Scholar 

  31. .Kacar, F., Yesil, A., Minaei, S., Kuntman, H.: Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int. J. Electron. Commun. (AEU) 68(1), 73–78 (2014)

    Google Scholar 

  32. Srivastava, M., Bhanja, P., Mir, S.: A new configuration for simulating passive elements in floating state employing VDCCs and grounded passive elements. In: IEEE-International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016), pp. 13–18, Delhi, India (2016)

    Google Scholar 

  33. Prasad, D., Srivastava, M., Ahmad, A., Mukhopadhyay, A., Sharma, B.B.: Novel VDCC based low-pass and high-pass ladder filters. In: IEEE-INDICON-2015, pp. 1–4, New Delhi, India (2015)

    Google Scholar 

  34. Biolek, D., Senani, R., Biolkova, V., Kolka, Z.: Active elements for analog signal processing; classification, review and new proposals. Radioengg. J. 17(4), 15–32 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devyanshi Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, P., Srivastava, M., Verma, A., Ali, A., Singh, A., Agarwal, D. (2019). A VDCC-Based Grounded Passive Element Simulator/Scaling Configuration with Electronic Control. In: Rawat, B., Trivedi, A., Manhas, S., Karwal, V. (eds) Advances in Signal Processing and Communication . Lecture Notes in Electrical Engineering, vol 526. Springer, Singapore. https://doi.org/10.1007/978-981-13-2553-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2553-3_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2552-6

  • Online ISBN: 978-981-13-2553-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics