Skin Aging & Cancer pp 87-100 | Cite as
Future Prospective of Nanotechnology in Skin Cancer Therapeutics
- 246 Downloads
Abstract
Melanoma is notorious and very aggressive skin cancer which is well known for its multidrug resistance. Thus, patients having melanoma have a low survival rate. Traditional anticancer treatment for melanoma with dacarbazine, interleukin-2 and interferon-alpha-2b, etc., showed low response and survival rates. However, recently targeted nanoparticle-based therapy displayed good response with better survival rates in melanoma-bearing patients. Better survival rate with very low adverse effects has been observed with targeted nanomedicines in animal models. Thus, numerous nanomedicines are currently under clinical trials worldwide.
Keywords
Nanoparticles Metastasis melanoma Melanoma Targeting Skin cancerNotes
Acknowledgements
LR gratefully acknowledges the fellowship provided by CSIR-Senior Research Associateship (Scientists’ Pool Scheme) (IA-27607) and CSIR-CDRI, Lucknow for providing facility and support.
References
- Bédard, M. F., De Geest, B. G., Skirtach, A. G., Möhwald, H., & Sukhorukov, G. B. (2010). Polymeric microcapsules with light responsive properties for encapsulation and release. Advances in Colloid and Interface Science, 158(1–2), 2–14.PubMedCrossRefPubMedCentralGoogle Scholar
- Bedikian, A. Y., Richards, J., Kharkevitch, D., Atkins, M. B., Whitman, E., & Gonzalez, R. (2010). A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Research, 20(3), 218–226.PubMedPubMedCentralGoogle Scholar
- Bedikian, A. Y., DeConti, R. C., Conry, R., Agarwala, S., Papadopoulos, N., Kim, K. B., et al. (2011). Phase 3 study of docosahexaenoic acid–paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Annals of Oncology, 22(4), 787–793.PubMedCrossRefPubMedCentralGoogle Scholar
- Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3(6), 401–410.PubMedCrossRefPubMedCentralGoogle Scholar
- Brahimi-Horn, M. C., Bellot, G., & Pouysségur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21(1), 67–72.CrossRefGoogle Scholar
- Cai, L., Wang, X., Wang, W., Qiu, N., Wen, J., Duan, X., et al. (2012). Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int J Nanomedicine, 7, 4499–4510.PubMedPubMedCentralGoogle Scholar
- Califano, J., & Nance, M. (2009). MalignantMelanoma. Facial Plastic Surgery Clinics of North America, 17(3), 337–348.PubMedCrossRefPubMedCentralGoogle Scholar
- Chen, X., Wang, X., Wang, Y., Yang, L., Hu, J., Xiao, W., et al. (2010a). Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. Journal of Controlled Release, 145(1), 17–25.PubMedCrossRefPubMedCentralGoogle Scholar
- Chen, Y., Bathula, S. R., Yang, Q., & Huang, L. (2010b). Targeted nanoparticles deliver siRNA to melanoma. The Journal of Investigative Dermatology, 130(12), 2790–2798.PubMedCrossRefPubMedCentralGoogle Scholar
- Chu, M., Pan, X., Zhang, D., Wu, Q., Peng, J., & Hai, W. (2012). The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials, 33(29), 7071–7083.PubMedCrossRefPubMedCentralGoogle Scholar
- D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248.PubMedPubMedCentralCrossRefGoogle Scholar
- Dai, W., Yang, T., Wang, Y., Wang, X., Wang, J., Zhang, X., et al. (2012). Peptide PHSCNK as an integrin alpha5beta1 antagonist targets stealth liposomes to integrin-overexpressing melanoma. Nanomedicine, 8(7), 1152–1161.PubMedCrossRefPubMedCentralGoogle Scholar
- Degen, A., Weichenthal, M., Ugurel, S., Trefzer, U., Kilian, K., Garbe, C., et al. (2013). Cutaneous side effects of combined therapy with sorafenib and pegylated interferon alpha-2b in metastatic melanoma (phase II DeCOG trial). Journal der Deutschen Dermatologischen Gesellschaft, 11(9), 846–853.PubMedPubMedCentralGoogle Scholar
- Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: Biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10(1), 9–22.PubMedPubMedCentralCrossRefGoogle Scholar
- Dubey, P. K., Singodia, D., & Vyas, S. P. (2010). Polymeric nanospheres modified with YIGSR peptide for tumor targeting. Drug Delivery, 17(7), 541–551.PubMedCrossRefPubMedCentralGoogle Scholar
- Durymanov, M. O., Beletkaia, E. A., Ulasov, A. V., Khramtsov, Y. V., Trusov, G. A., Rodichenko, N. S., et al. (2012). Subcellular trafficking and transfection efficacy of polyethylenimine–polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. Journal of Controlled Release, 163(2), 211–219.PubMedPubMedCentralCrossRefGoogle Scholar
- Eggermont, A. M., Suciu, S., Testori, A., Santinami, M., Kruit, W. H., Marsden, J., et al. (2012). Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. Journal of Clinical Oncology, 30(31), 3810–3818.PubMedCrossRefPubMedCentralGoogle Scholar
- Falvo, E., Tremante, E., Fraioli, R., Leonetti, C., Zamparelli, C., Boffi, A., et al. (2013). Antibody-drug conjugates: Targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale, 5(24), 12278–12285.PubMedCrossRefPubMedCentralGoogle Scholar
- Ferreira, D. M., Saga, Y. Y., Aluicio-Sarduy, E., & Tedesco, A. C. (2013). Chitosan nanoparticles for melanoma cancer treatment by photodynamic therapy and electrochemotherapy using aminolevulinic acid derivatives. Current Medicinal Chemistry, 20(14), 1904–1911.PubMedCrossRefPubMedCentralGoogle Scholar
- Fitzpatrick, T. B., & Sober, A. J. (1985). Sunlight and skin cancer. New England Journal of Medicine, 313(13), 818–820.PubMedCrossRefPubMedCentralGoogle Scholar
- Goldberg, L. H. (1996). Basal cell carcinoma. Lancet, 347(9002), 663–667.PubMedCrossRefPubMedCentralGoogle Scholar
- Grob, J. J., Jouary, T., Dréno, B., Asselineau, J., Gutzmer, R., Hauschild, A., et al. (2013). Adjuvant therapy with pegylated interferon alfa-2b (36 months) versus low-dose interferon alfa-2b (18 months) in melanoma patients without macrometastatic nodes: An open-label, randomised, phase 3 European Association for Dermato-Oncology (EADO) study. European Journal of Cancer, 49(1), 166–174.PubMedCrossRefPubMedCentralGoogle Scholar
- Gu, J., Wang, X., Jiang, X., Chen, Y., Chen, L., Fang, X., et al. (2012). Self-assembled carboxymethyl poly (L-histidine) coated poly (beta-amino ester)/DNA complexes for gene transfection. Biomaterials, 33(2), 644–658.PubMedCrossRefPubMedCentralGoogle Scholar
- Guan, Y. Y., Luan, X., Xu, J. R., Liu, Y. R., Lu, Q., Wang, C., et al. (2014). Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials, 35(9), 3060–3070.PubMedCrossRefPubMedCentralGoogle Scholar
- Hamano, N., Negishi, Y., Fujisawa, A., Manandhar, M., Sato, H., Katagiri, F., et al. (2012). Modification of the C16Y peptide on nanoparticles is an effective approach to target endothelial and cancer cells via the integrin receptor. International Journal of Pharmaceutics, 428(1–2), 114–117.PubMedCrossRefPubMedCentralGoogle Scholar
- Hersh, E. M., O’Day, S. J., Ribas, A., Samlowski, W. E., Gordon, M. S., Shechter, D. E., et al. (2010). A phase 2 clinical trial of nab–paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer, 116(1), 155–163.PubMedPubMedCentralGoogle Scholar
- Homsi, J., Bedikian, A. Y., Papadopoulos, N. E., Kim, K. B., Hwu, W. J., Mahoney, S. L., et al. (2010). Phase 2 open-label study of weekly docosahexaenoic acid–paclitaxel in patients with metastatic uveal melanoma. Melanoma Research, 20(6), 507–510.PubMedCrossRefPubMedCentralGoogle Scholar
- Huang, F. Y., Mei, W. L., Li, Y. N., Tan, G. H., Dai, H. F., Guo, J. L., et al. (2012). The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. European Journal of Cancer, 48(14), 2260–2269.PubMedCrossRefPubMedCentralGoogle Scholar
- Huang, C., Jin, H. L., Qian, Y., Qi, S. H., Luo, H. M., Luo, Q. M., et al. (2013). Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano, 7(7), 5791–5800.PubMedCrossRefGoogle Scholar
- Ito, A., Saito, H., Mitobe, K., Minamiya, Y., Takahashi, N., Maruyama, K., et al. (2009). Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature. Cancer Science, 100(3), 558–564.PubMedCrossRefGoogle Scholar
- Kluza, E., Jacobs, I., Hectors, S. J., Mayo, K. H., Griffioen, A. W., Strijkers, G. J., et al. (2012). Dual-targeting of alphavbeta3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. Journal of Controlled Release, 158(2), 207–214.PubMedCrossRefGoogle Scholar
- Kottschade, L. A., Suman, V. J., Amatruda, T., III, McWilliams, R. R., Mattar, B. I., Nikcevich, D. A., et al. (2011). A phase II trial of nab–paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma: A north central Cancer treatment group study, N057E (1). Cancer, 117(8), 1704–1710.PubMedCrossRefGoogle Scholar
- Kottschade, L. A., Suman, V. J., Perez, D. G., McWilliams, R. R., Kaur, J. S., Amatruda, T. T., III, et al. (2013). A randomized phase 2 study of temozolomide and bevacizumab or nab–paclitaxel, carboplatin, and bevacizumab in patients with unresectable stage IV melanoma: A north central Cancer treatment group study, N0775. Cancer, 119(3), 586–592.PubMedCrossRefGoogle Scholar
- Li, L., ten Hagen, T. L., Hossann, M., Süss, R., van Rhoon, G. C., Eggermont, A. M., et al. (2013). Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. Journal of Controlled Release, 168(2), 142–150.PubMedCrossRefGoogle Scholar
- Li, J., Wang, Y., Liang, R., An, X., Wang, K., Shen, G., Yating, T., Zhu, J., & Tao, J. (2015). Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 11, 769–794.CrossRefGoogle Scholar
- Liu, F., Feng, L., Zhang, L., Zhang, X., & Zhang, N. (2013). Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel. International Journal of Pharmaceutics, 451(1–2), 41–49.PubMedCrossRefGoogle Scholar
- Lomas, J., Leonardi-Bee, J., & Bath-Hextall, F. (2012). A systematic review of worldwide incidence of nonmelanoma skin cancer. British Journal of Dermatology, 166(5), 1069–1080.PubMedCrossRefGoogle Scholar
- Lu, W., Xiong, C., Zhang, G., Huang, Q., Zhang, R., Zhang, J. Z., et al. (2009). Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog conjugated hollow gold nanospheres. Clinical Cancer Research, 15(3), 876–886.PubMedPubMedCentralCrossRefGoogle Scholar
- Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46(12 Pt 1), 6387–6392.PubMedPubMedCentralGoogle Scholar
- Medical Center University of California. (2007). Nonmelanoma skin cancer vs. Melanoma.Google Scholar
- Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010a). Ultraviolet radiation and skin cancer. International Journal of Dermatology, 49(9), 978–986.PubMedPubMedCentralCrossRefGoogle Scholar
- Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010b). Ultraviolet radiation and skin cancer. International Journal of Dermatology, 49(9), 978–986.PubMedPubMedCentralCrossRefGoogle Scholar
- Onkolõski Iñstitut Ljubljana, Rak v Sloveniji. (2012). Edited by M. ˇZakelj Primic, Onkolõski iñstitut Ljubljana, Epidemiologija in Register Raka, Register Raka Republike Slovenije, Ljubljana, Slovenia, 2015.Google Scholar
- Sachdeva, S. (2009). Fitzpatrick skin typing: Applications in dermatology. Indian Journal of Dermatology, Venereology and Leprology, 75(1), 93–96.PubMedCrossRefPubMedCentralGoogle Scholar
- Simões, M. C. F., Sousa, J. J. S., & Pais, A. A. C. C. (2015). Skin cancer and new treatment perspectives: A review. Cancer Letters, 357(1), 8–42.PubMedCrossRefGoogle Scholar
- Slora. (2016). Maligni melanom (C43): Slora. http://www.slora.si/c/documentlibrary/getfile?uuid=c2e610c7-5353-40dd-93e9-1b1b2320e3e1&groupId=11561
- Soman, N., Marsh, J., Lanza, G., & Wickline, S. (2008a). New mechanisms for nonporative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles. Nanotechnology, 19(18), 185102.PubMedPubMedCentralCrossRefGoogle Scholar
- Soman, N. R., Lanza, G. M., Heuser, J. M., Schlesinger, P. H., & Wickline, S. A. (2008b). Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Letters, 8(4), 1131–1136.PubMedPubMedCentralCrossRefGoogle Scholar
- Soman, N. R., Baldwin, S. L., Hu, G., Marsh, J. N., Lanza, G. M., Heuser, J. E., et al. (2009). Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. The Journal of Clinical Investigation, 119(9), 2830–2842.PubMedPubMedCentralCrossRefGoogle Scholar
- Song, C. K., Lee, J. H., Jahn, A., Choi, M. J., Namgoong, S. K., Hong, S. S., et al. (2012). In vitro and in vivo evaluation of N,N,N-trimethylphytosphingosineiodide (TMP) in liposomes for the treatment of angiogenesis and metastasis. International Journal of Pharmaceutics, 434(1–2), 191–198.PubMedCrossRefPubMedCentralGoogle Scholar
- Sun, M., Wang, Y., Shen, J., Xiao, Y., Su, Z., & Ping, Q. (2010). Octreotidemodification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology, 21(47), 475101.PubMedCrossRefPubMedCentralGoogle Scholar
- Talelli, M., Iman, M., Varkouhi, A. K., Rijcken, C. J., Schiffelers, R. M., Etrych, T., et al. (2010). Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Bimaterials, 31(30), 7797–7804.CrossRefGoogle Scholar
- Tao, J., Liu, Y. Q., Li, Y., Peng, J. L., Li, L., Liu, J., et al. (2007). Hypoxia: Dual effect on the expression of transferrin receptor in human melanoma A375 cell line. Experimental Dermatology, 16(11), 899–904.PubMedCrossRefPubMedCentralGoogle Scholar
- Ukawala, M., Chaudhari, K., Rajyaguru, T., Manjappa, A. S., Murthy, R. S., & Gude, R. (2012). Laminin receptor-targeted etoposide loaded polymeric micelles: A novel approach for the effective treatment of tumor metastasis. Journal of Drug Targeting, 20(1), 55–66.PubMedCrossRefPubMedCentralGoogle Scholar
- Velluto, D., Thomas, S. N., Simeoni, E., Swartz, M. A., & Hubbell, J. A. (2011). PEG-b–PPS-b–PEI micelles and PEG-b–PPS/PEG-b–PPS-b–PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials, 32(36), 9839–9847.PubMedCrossRefPubMedCentralGoogle Scholar
- Wang, Y., Yang, T., Wang, X., Dai, W., Wang, J., Zhang, X., et al. (2011a). Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. Journal of Controlled Release, 149(3), 299–306.PubMedCrossRefPubMedCentralGoogle Scholar
- Wang, Z., Chui, W. K., & Ho, P. C. (2011b). Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharmaceutical Research, 28(3), 585–596.PubMedCrossRefPubMedCentralGoogle Scholar
- Xiao, M., Liang, R., Deng, R., Dong, L., Yi, S., Zhu, J., et al. (2013). pH-Sensitive cisplatin-loaded gold nanoparticles for potential melanoma therapy. Journal of Controlled Release, 172, e44.CrossRefGoogle Scholar
- Yang, Y., Liu, X., Zhang, D., Yu, W., Lv, G., Xie, H., et al. (2011). Chitosan/VEGFsIRNA nanoparticle for gene silencing. Journal of Controlled Release, 152(Suppl 1), e160–e161.PubMedCrossRefPubMedCentralGoogle Scholar
- Yang, Y., Li, J., Liu, F., & Huang, L. (2012). Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Molecular Therapy, 20(3), 609–615.PubMedCrossRefPubMedCentralGoogle Scholar
- Yu, B., Tai, H. C., Xue, W., Lee, L. J., & Lee, R. J. (2010). Receptor-targeted nanocarriers for therapeutic delivery to cancer. Molecular Membrane Biology, 27(7), 286–298.PubMedPubMedCentralCrossRefGoogle Scholar
- Zhang, W., Shi, Y., Chen, Y., Hao, J., Sha, X., & Fang, X. (2011). The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials, 32(25), 5934–5944.PubMedCrossRefPubMedCentralGoogle Scholar
- Zheng, L., Gou, M., Zhou, S., Yi, T., Zhong, Q., Li, Z., et al. (2011). Antitumor activity of monomethoxy poly(ethylene glycol)–poly (epsilon-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncology Reports, 25(6), 1557–1564.PubMedPubMedCentralGoogle Scholar
- Zhou, T., Xiao, C., Fan, J., Chen, S., Shen, J., Wu, W., et al. (2013). A nanogel of onsite tunable pH-response for efficient anticancer drug delivery. Acta Biomaterialia, 9(1), 4546–4557.PubMedCrossRefPubMedCentralGoogle Scholar
- Zhu, S., Lansakara-P, D. S., Li, X., & Cui, Z. (2012). Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjugate Chemistry, 23(5), 966–980.PubMedPubMedCentralCrossRefGoogle Scholar