Skip to main content

Chemiexcitation of Melanin and Melanoma Pathogenesis

  • Chapter
  • First Online:
Skin Aging & Cancer

Abstract

Solar radiation is an ultimate source of energy for the existence of life on earth. The UV radiation is a part of solar radiation that acts as a carcinogenic agent by the formation of cyclobutane pyrimidine dimers (CPDs). Earlier studies documented the mechanism of CPD formation in the presence of UV light instantly but recent studies showed the damage of DNA is continuing even after the exposure of UV light till hours. The mechanism of this delayed or dark CPD resembles with chemiluminescence process. The study further detailed the key role of melanocytes in this process of dark CPD formation by chemiexcitation of melanin pigment. Melanin gets excited to higher energy level after UV exposure by the production of free radicals like nitric oxide and superoxide. Thus, this excitation of melanin pigments is responsible factor for damage of DNA after exposure of longer wavelength of UVA which ultimately promotes melanoma pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, D. M., Todes-Taylor, N., Wagoner, M., Nordlund, J. J., & Lerner, A. B. (1982 Jan). Vitiligo or halo nevi occurring in two patients with choroidal melanoma. Archives of Dermatology, 118(1), 34–36.

    Google Scholar 

  • Baldea, I., Mocan, T., & Cosgarea, R. (2009). The role of ultraviolet radiation and tyrosine stimulated melanogenesis in the induction of oxidative stress alterations in fair skin melanocytes. Experimental Oncology, 31, 200–208.

    PubMed  CAS  Google Scholar 

  • Bennett, D. C., Cooper, P. J., Dexter, T. J., et al. (1989). Cloned mouse melanocyte lines carrying the germline mutations albino and brown: Complementation in culture. Development, 105, 379–385.

    PubMed  CAS  Google Scholar 

  • Brash, D. E. (2016, June). UV-induced melanin chemiexcitation: A new mode of melanoma pathogenesis. Toxicologic Pathology, 44(4), 552–554.

    Article  CAS  Google Scholar 

  • Burchill, S. A., Marks, J. M., & Thody, A. J. (1990). Tyrosinase synthesis in diRerent skin types and the clfccts of a-mclanocytc-stimulatillg hormonc and cyclic AMP fll” est DCI’II/fllol, 95, 558–561.

    Google Scholar 

  • Chaiprasongsuk, A., Onkoksoong, T., Pluemsamran, T., & Limsaengurai, S. (2016). Uraiwan Panich. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biology, 8, 79–90.

    Article  CAS  Google Scholar 

  • Fitzpatrick, T. B., Forlot, P., Pathak, M. A., & Urbach, F. (1989). Psoralens: Past, present, and future of Photochemoprotection and other biological activities (pp. 5–10). Paris: John Libbey Eurotext.

    Google Scholar 

  • Friedmann, P. S., & Gilchrcst, B. (1987). Ultr:lviolet radi:ltion directly induccs pigmcllt production b)’ cultured hUlllan melanocytes. ) Cdl PIt), si, 1 133, 88–94

    Google Scholar 

  • Gschnait, F., Brcnner, W., & Wolff’, K. (1978). Photoprotective CUCCI’of” psor:1lcn-UVA-induced tan. Arclt Dermnlol Re.•, 263, 181–188

    Google Scholar 

  • Haywood, J., Francis, P., Dubovik, O., Glew, M., & Holben, B. (2003). Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8471. https://doi.org/10.1029/2002JD002250.

    Google Scholar 

  • Hearing, V. J., Nicholson, J. M., Montague, P. M., Ekel, T. M., & Tomecki, K. J. (1978). Mammalian tyrosin:1sc structural and functional interelationship of isocllzy.-nes. Di(Jritilll/3ioph), s Ac, n, 522, 327–339.

    CAS  Google Scholar 

  • Jhappan, C., Noonan, F., & Merlino, G. (2003). UV radiation and cutaneous malignant melanoma. Oncogene, 22, 3099–3112. http://dx.doi.org/10.1038/sj.onc.1206450

  • Kvam, E., & Dahle, J. (2003). Pigmented melanocytes are protected against ultraviolet-A-induced membrane damage. The Journal of Investigative Dermatology, 121, 564–569.

    Article  CAS  Google Scholar 

  • Kvam, E., & Tyrrell, R. M. (1999, August). The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells. The Society for Investigative Dermatology, 113(2), 209–213.

    Article  CAS  Google Scholar 

  • Legros, F., Coel, J., Doyen, A., Hanson, P., Van Tieghem, N., Vercammen- Grandjean, A., Fruhling, J., & Lejeune, F. J. (1981). Alpha-Melanocyte-stimulating hormone binding and biological activity in a human melanoma cell line. Cancer Research, 41, 1539–1544.

    PubMed  CAS  Google Scholar 

  • López-Camarillo, C., Ocampo, E. A., Casamichana, M. L., Pérez-Plasencia, C., Alvarez-Sánchez, E., & Marchat, L. A. (2012). Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for carcinogenesis. International Journal of Molecular Sciences, 13, 142–172.

    Article  CAS  Google Scholar 

  • Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (Sep 2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765–13770.

    Google Scholar 

  • Ortonllc, J. P., Moshcr, D. B., & Fitzpatrick, T. B. (1983). lllld OtJ,er H)’IWllldmlOsis of Hair alld Skill. Plenull1 Press, New York, PI’ 257–258. Journal of Investigative Dermatology (2014) 134, 1083–1090; https://doi.org/10.1038/jid.2013.479; published online 12 December 2013.

    Article  CAS  Google Scholar 

  • Panich, U., Tangsupa-a-nan, V., Onkoksoong, T., Kongtaphan, K., Kasetsinsombat, K., Akarasereenont, P., & Wongkajornsilp, A. (2011). Inhibition of UVA- mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Archives of Pharmacal Research, 34, 811–820.

    Article  CAS  Google Scholar 

  • Panich, U., Onkoksoong, T., Limsaengurai, S., Akarasereenont, P., & Wongkajornsilp, A. (2012). UVA-induced melanogenesis and modulation of glutathione redox system in different melanoma cell lines: the protective effect of gallic acid. The Journal of Photochemistry and Photobiology B, 108, 16–22.

    Article  CAS  Google Scholar 

  • Peng, H. Y., Lin, C. C., Wang, H. Y., Shih, Y., & Chou, S. T. (2014). The melanogenesis alteration effects of Achillea millefolium L. essential oil and linalyl acetate: Involvement of oxidative stress and the JNK and ERK signaling pathways in melanoma cells. International Journal of Molecular Sciences, 11, 1082–1089.

    Article  Google Scholar 

  • Premi, S., Wallisch, S., Mano, C. M., Weiner, A. B., Bacchiocchi, A., Wakamatsu, K., Bechara, E. J., Halaban, R., Douki, T., & Brash, D. E. (2015). Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science, 347, 842–847. [PubMed: 25700512].

    Article  CAS  Google Scholar 

  • Redmond, R. W., Rajadurai, A., Udayakumar, D., Sviderskaya, E. V., & Tsao, H. (2014). Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling. Journal of Investigative Dermatology, 134(4), 1083–1090.

    Article  CAS  Google Scholar 

  • Seiberg, M. (2001). Keratinocyte–melanocyte interactions during melanosome transfer. Pigment Cell Research, 14, 236–242.

    Article  CAS  Google Scholar 

  • Slocum, S. L., & Kensler, T. W. (2011). Nrf2: Control of sensitivity to carcinogens. Archives of Toxicology, 85, 273–284.

    Article  CAS  Google Scholar 

  • Swalwell, H., Latimer, J., Haywood, R. M., & Birch-Machin, M. A. (2012). Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radical Biology & Medicine, 52, 626–634.

    Article  CAS  Google Scholar 

  • Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules. Sausalito: University Science Books.

    Google Scholar 

  • Valencia, A., & Kochevar, I. E. (2008). Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. The Journal of Investigative Dermatology, 128, 214–222.

    Google Scholar 

  • Wan, J., Liu, X. M., Lei, T. C., et al. (2009). Effects of mutation in dopachrome tautomerase on melanosome maturation and anti-oxidative potential in cultured melanocytes. Zhonghua Yi Xue Za Zhi, 89, 1707–1710.

    PubMed  CAS  Google Scholar 

  • Wenczl, E., Van der Schans, G. P., Roza, L., Kolb, R. M., Timmerman, A. J., Smit, N. P. M., Pavel, S., & Schothorst, A. A. (1998). (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. The Society for Investigative Dermatology, 111(4), 678–682.

    Article  CAS  Google Scholar 

  • Zi, S. X., Ma, H. J., Li, Y., Liu, W., Yang, Q. Q., Zhao, G., & Lian, S. (2009). Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. International Journal of Molecular Medicine, 23, 197–204.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amar, S.K., Kumar, D. (2019). Chemiexcitation of Melanin and Melanoma Pathogenesis. In: Dwivedi, A., Agarwal, N., Ray, L., Tripathi, A. (eds) Skin Aging & Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-13-2541-0_8

Download citation

Publish with us

Policies and ethics