Advertisement

Chemiexcitation of Melanin and Melanoma Pathogenesis

  • Saroj Kumar Amar
  • Dhanananajay Kumar
Chapter
  • 237 Downloads

Abstract

Solar radiation is an ultimate source of energy for the existence of life on earth. The UV radiation is a part of solar radiation that acts as a carcinogenic agent by the formation of cyclobutane pyrimidine dimers (CPDs). Earlier studies documented the mechanism of CPD formation in the presence of UV light instantly but recent studies showed the damage of DNA is continuing even after the exposure of UV light till hours. The mechanism of this delayed or dark CPD resembles with chemiluminescence process. The study further detailed the key role of melanocytes in this process of dark CPD formation by chemiexcitation of melanin pigment. Melanin gets excited to higher energy level after UV exposure by the production of free radicals like nitric oxide and superoxide. Thus, this excitation of melanin pigments is responsible factor for damage of DNA after exposure of longer wavelength of UVA which ultimately promotes melanoma pathogenesis.

Keywords

CPD Chemiexcitation DNA damage Melanin UV radiation 

References

  1. Albert, D. M., Todes-Taylor, N., Wagoner, M., Nordlund, J. J., & Lerner, A. B. (1982 Jan). Vitiligo or halo nevi occurring in two patients with choroidal melanoma. Archives of Dermatology, 118(1), 34–36.Google Scholar
  2. Baldea, I., Mocan, T., & Cosgarea, R. (2009). The role of ultraviolet radiation and tyrosine stimulated melanogenesis in the induction of oxidative stress alterations in fair skin melanocytes. Experimental Oncology, 31, 200–208.PubMedGoogle Scholar
  3. Bennett, D. C., Cooper, P. J., Dexter, T. J., et al. (1989). Cloned mouse melanocyte lines carrying the germline mutations albino and brown: Complementation in culture. Development, 105, 379–385.PubMedGoogle Scholar
  4. Brash, D. E. (2016, June). UV-induced melanin chemiexcitation: A new mode of melanoma pathogenesis. Toxicologic Pathology, 44(4), 552–554.CrossRefGoogle Scholar
  5. Burchill, S. A., Marks, J. M., & Thody, A. J. (1990). Tyrosinase synthesis in diRerent skin types and the clfccts of a-mclanocytc-stimulatillg hormonc and cyclic AMP fll” est DCI’II/fllol, 95, 558–561.Google Scholar
  6. Chaiprasongsuk, A., Onkoksoong, T., Pluemsamran, T., & Limsaengurai, S. (2016). Uraiwan Panich. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biology, 8, 79–90.CrossRefGoogle Scholar
  7. Fitzpatrick, T. B., Forlot, P., Pathak, M. A., & Urbach, F. (1989). Psoralens: Past, present, and future of Photochemoprotection and other biological activities (pp. 5–10). Paris: John Libbey Eurotext.Google Scholar
  8. Friedmann, P. S., & Gilchrcst, B. (1987). Ultr:lviolet radi:ltion directly induccs pigmcllt production b)’ cultured hUlllan melanocytes. ) Cdl PIt), si, 1 133, 88–94Google Scholar
  9. Gschnait, F., Brcnner, W., & Wolff’, K. (1978). Photoprotective CUCCI’of” psor:1lcn-UVA-induced tan. Arclt Dermnlol Re.•, 263, 181–188Google Scholar
  10. Haywood, J., Francis, P., Dubovik, O., Glew, M., & Holben, B. (2003). Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8471. https://doi.org/10.1029/2002JD002250.Google Scholar
  11. Hearing, V. J., Nicholson, J. M., Montague, P. M., Ekel, T. M., & Tomecki, K. J. (1978). Mammalian tyrosin:1sc structural and functional interelationship of isocllzy.-nes. Di(Jritilll/3ioph), s Ac, n, 522, 327–339.Google Scholar
  12. Jhappan, C., Noonan, F., & Merlino, G. (2003). UV radiation and cutaneous malignant melanoma. Oncogene, 22, 3099–3112. http://dx.doi.org/10.1038/sj.onc.1206450
  13. Kvam, E., & Dahle, J. (2003). Pigmented melanocytes are protected against ultraviolet-A-induced membrane damage. The Journal of Investigative Dermatology, 121, 564–569.CrossRefGoogle Scholar
  14. Kvam, E., & Tyrrell, R. M. (1999, August). The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells. The Society for Investigative Dermatology, 113(2), 209–213.CrossRefGoogle Scholar
  15. Legros, F., Coel, J., Doyen, A., Hanson, P., Van Tieghem, N., Vercammen- Grandjean, A., Fruhling, J., & Lejeune, F. J. (1981). Alpha-Melanocyte-stimulating hormone binding and biological activity in a human melanoma cell line. Cancer Research, 41, 1539–1544.PubMedGoogle Scholar
  16. López-Camarillo, C., Ocampo, E. A., Casamichana, M. L., Pérez-Plasencia, C., Alvarez-Sánchez, E., & Marchat, L. A. (2012). Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for carcinogenesis. International Journal of Molecular Sciences, 13, 142–172.CrossRefGoogle Scholar
  17. Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (Sep 2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765–13770.Google Scholar
  18. Ortonllc, J. P., Moshcr, D. B., & Fitzpatrick, T. B. (1983). lllld OtJ,er H)’IWllldmlOsis of Hair alld Skill. Plenull1 Press, New York, PI’ 257–258. Journal of Investigative Dermatology (2014) 134, 1083–1090;  https://doi.org/10.1038/jid.2013.479; published online 12 December 2013.CrossRefGoogle Scholar
  19. Panich, U., Tangsupa-a-nan, V., Onkoksoong, T., Kongtaphan, K., Kasetsinsombat, K., Akarasereenont, P., & Wongkajornsilp, A. (2011). Inhibition of UVA- mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Archives of Pharmacal Research, 34, 811–820.CrossRefGoogle Scholar
  20. Panich, U., Onkoksoong, T., Limsaengurai, S., Akarasereenont, P., & Wongkajornsilp, A. (2012). UVA-induced melanogenesis and modulation of glutathione redox system in different melanoma cell lines: the protective effect of gallic acid. The Journal of Photochemistry and Photobiology B, 108, 16–22.CrossRefGoogle Scholar
  21. Peng, H. Y., Lin, C. C., Wang, H. Y., Shih, Y., & Chou, S. T. (2014). The melanogenesis alteration effects of Achillea millefolium L. essential oil and linalyl acetate: Involvement of oxidative stress and the JNK and ERK signaling pathways in melanoma cells. International Journal of Molecular Sciences, 11, 1082–1089.CrossRefGoogle Scholar
  22. Premi, S., Wallisch, S., Mano, C. M., Weiner, A. B., Bacchiocchi, A., Wakamatsu, K., Bechara, E. J., Halaban, R., Douki, T., & Brash, D. E. (2015). Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science, 347, 842–847. [PubMed: 25700512].CrossRefGoogle Scholar
  23. Redmond, R. W., Rajadurai, A., Udayakumar, D., Sviderskaya, E. V., & Tsao, H. (2014). Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling. Journal of Investigative Dermatology, 134(4), 1083–1090.CrossRefGoogle Scholar
  24. Seiberg, M. (2001). Keratinocyte–melanocyte interactions during melanosome transfer. Pigment Cell Research, 14, 236–242.CrossRefGoogle Scholar
  25. Slocum, S. L., & Kensler, T. W. (2011). Nrf2: Control of sensitivity to carcinogens. Archives of Toxicology, 85, 273–284.CrossRefGoogle Scholar
  26. Swalwell, H., Latimer, J., Haywood, R. M., & Birch-Machin, M. A. (2012). Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radical Biology & Medicine, 52, 626–634.CrossRefGoogle Scholar
  27. Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules. Sausalito: University Science Books.Google Scholar
  28. Valencia, A., & Kochevar, I. E. (2008). Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. The Journal of Investigative Dermatology, 128, 214–222.Google Scholar
  29. Wan, J., Liu, X. M., Lei, T. C., et al. (2009). Effects of mutation in dopachrome tautomerase on melanosome maturation and anti-oxidative potential in cultured melanocytes. Zhonghua Yi Xue Za Zhi, 89, 1707–1710.PubMedGoogle Scholar
  30. Wenczl, E., Van der Schans, G. P., Roza, L., Kolb, R. M., Timmerman, A. J., Smit, N. P. M., Pavel, S., & Schothorst, A. A. (1998). (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. The Society for Investigative Dermatology, 111(4), 678–682.CrossRefGoogle Scholar
  31. Zi, S. X., Ma, H. J., Li, Y., Liu, W., Yang, Q. Q., Zhao, G., & Lian, S. (2009). Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. International Journal of Molecular Medicine, 23, 197–204.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saroj Kumar Amar
    • 1
  • Dhanananajay Kumar
    • 2
  1. 1.Department of Forensics Science, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of Pharmaceutical Engineering & TechnologyIIT-BHUVaranasiIndia

Personalised recommendations