Skin Aging & Cancer pp 29-40 | Cite as
Human Skin Stem Cells, Aging, and Possible Antiaging Strategies
- 270 Downloads
Abstract
Human skin is the largest organ of the body and it provides the first line of the defense system against environmental factors coming in contact by evading our ecosystem. Skin possesses notable regeneration capacity due to the presence of different types of stem cells including epithelial stem cells, melanocyte stem cells, mesenchymal stem-like cells, and progenitor cells. Moreover, the integrity of the skin is mainly maintained by epidermal stem cells. Skin and skin stem cells are more vulnerable toward aging process due to their direct contact with external stimuli including environmental pollutants, infection, and UV irradiation. Aging is a complex and multifactorial process mainly caused by imbalanced redox status, DNA mutation, and telomere shortening. The reactive oxygen species (ROS) overproduction is the major contributor of skin aging as ROS exert oxidative damage to macromolecules and cell organelles, which continuously accumulate and further accelerate aging process. Additionally, UV irradiation induces oxidative stress, overproduction of ROS, and DNA damage which collectively cause photoaging of the skin. This chapter summarizes the overall effects of oxidative stress on skin aging, and several antiaging strategies such as supplementation of nutritional antioxidants and autophagy modulation are also described to slow down the aging process of skin as well as skin diseases.
Keywords
Aging Antioxidant Oxidative stress Photoaging Skin Stem cellsNotes
Acknowledgments
S. S. Tripathi would like to acknowledge DSKPDF scheme of University Grants Commission, New Delhi, India, for providing financial support (F.4-2/2006(BSR)/BL/17-18/0381).
References
- Adjaye, J., Huntriss, J., Herwig, R., et al. (2005). Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells, 23, 1514–1525. https://doi.org/10.1634/stemcells.2005-0113.CrossRefPubMedGoogle Scholar
- Armstrong, B. K., & Kricker, A. (2001). The epidemiology of UV induced skin cancer. Journal of Photochemistry and Photobiology B, 63, 8–18.CrossRefGoogle Scholar
- Ashcroft, G. S., Dodsworth, J., van Boxtel, E., et al. (1997). Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nature Medicine, 3, 1209–1215.CrossRefGoogle Scholar
- Azzi, L., El-Alfy, M., Martel, C., & Labrie, F. (2005). Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. The Journal of Investigative Dermatology, 124, 22–27. https://doi.org/10.1111/j.0022-202X.2004.23545.x.CrossRefPubMedGoogle Scholar
- Baumann, L. (2007). Skin ageing and its treatment. The Journal of Pathology, 211, 241–251. https://doi.org/10.1002/path.2098.CrossRefPubMedGoogle Scholar
- Behera, S. S., Das, U., Kumar, A., et al. (2017). Chitosan/TiO2composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340. https://doi.org/10.1016/j.ijbiomac.2017.02.017.CrossRefPubMedGoogle Scholar
- Berger, M. M. (2005). Can oxidative damage be treated nutritionally? Clinical Nutrition, 24, 172–183. https://doi.org/10.1016/j.clnu.2004.10.003.CrossRefPubMedGoogle Scholar
- Berneburg, M., Gattermann, N., Stege, H., et al. (1997). Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochemistry and Photobiology, 66, 271–275.CrossRefGoogle Scholar
- Bickenbach, J. R., Vormwald-Dogan, V., Bachor, C., et al. (1998). Telomerase is not an epidermal stem cell marker and is downregulated by calcium. The Journal of Investigative Dermatology, 111, 1045–1052. https://doi.org/10.1046/j.1523-1747.1998.00420.x.CrossRefPubMedGoogle Scholar
- Blasco, M. A. (2005). Telomeres and human disease: Ageing, cancer and beyond. Nature Reviews Genetics, 6, 611–622. https://doi.org/10.1038/nrg1656.CrossRefPubMedGoogle Scholar
- Boukamp, P. (2005). Skin aging: A role for telomerase and telomere dynamics? Current Molecular Medicine, 5, 171–177.CrossRefGoogle Scholar
- Brincat, M. P. (2000). Hormone replacement therapy and the skin: Beneficial effects: The case in favor of it. Acta Obstetricia et Gynecologica Scandinavica, 79, 244–249.CrossRefGoogle Scholar
- Chance, B., Sies, H., & Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 59, 527–605. https://doi.org/10.1152/physrev.1979.59.3.527.CrossRefPubMedGoogle Scholar
- Chen, W., Kang, J., Xia, J., et al. (2008). p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. International Journal of Molecular Medicine, 21, 645–653.PubMedGoogle Scholar
- Christiano, A. M. (2004). Epithelial stem cells: Stepping out of their niche. Cell, 118, 530–532. https://doi.org/10.1016/j.cell.2004.08.024.CrossRefPubMedGoogle Scholar
- Collins, K., & Mitchell, J. R. (2002). Telomerase in the human organism. Oncogene, 21, 564–579. https://doi.org/10.1038/sj.onc.1205083.CrossRefPubMedGoogle Scholar
- Counter, C. M., Press, W., & Compton, C. C. (2003). Telomere shortening in cultured autografts of patients with burns. Lancet, 361, 1345–1346. https://doi.org/10.1016/S0140-6736(03)13042-5.CrossRefPubMedGoogle Scholar
- Elwood, J. M., & Jopson, J. (1997). Melanoma and sun exposure: An overview of published studies. International Journal of Cancer, 73, 198–203.CrossRefGoogle Scholar
- Engelhardt, M., Kumar, R., Albanell, J., et al. (1997). Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood, 90, 182–193.CrossRefGoogle Scholar
- Fisher, G. J., Wang, Z. Q., Datta, S. C., et al. (1997). Pathophysiology of premature skin aging induced by ultraviolet light. The New England Journal of Medicine, 337, 1419–1428. https://doi.org/10.1056/NEJM199711133372003.CrossRefPubMedGoogle Scholar
- Fisher, G. J., Kang, S., Varani, J., et al. (2002). Mechanisms of photoaging and chronological skin aging. Archives of Dermatology, 138, 1462–1470.CrossRefGoogle Scholar
- Friedrich, U., Griese, E., Schwab, M., et al. (2000). Telomere length in different tissues of elderly patients. Mechanisms of Ageing and Development, 119, 89–99.CrossRefGoogle Scholar
- Fuchs, E. (2008). Skin stem cells: Rising to the surface. The Journal of Cell Biology, 180, 273–284. https://doi.org/10.1083/jcb.200708185.CrossRefPubMedPubMedCentralGoogle Scholar
- Funk, W. D., Wang, C. K., Shelton, D. N., et al. (2000). Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Experimental Cell Research, 258, 270–278. https://doi.org/10.1006/excr.2000.4945.CrossRefPubMedGoogle Scholar
- Fusco, D., Colloca, G., Lo Monaco, M. R., & Cesari, M. (2007). Effects of antioxidant supplementation on the aging process. Clinical Interventions in Aging, 2, 377–387.PubMedPubMedCentralGoogle Scholar
- Garbe, C., & Leiter, U. (2009). Melanoma epidemiology and trends. Clinics in Dermatology, 27, 3–9. https://doi.org/10.1016/j.clindermatol.2008.09.001.CrossRefPubMedGoogle Scholar
- Gardner, R. L., & Beddington, R. S. (1988). Multi-lineage “stem” cells in the mammalian embryo. Journal of Cell Science, 10, 11–27.CrossRefGoogle Scholar
- Garzón, I., Miyake, J., González-Andrades, M., et al. (2013). Wharton’s jelly stem cells: A novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Translational Medicine, 2, 625–632. https://doi.org/10.5966/sctm.2012-0157.CrossRefPubMedPubMedCentralGoogle Scholar
- Ito, M., & Cotsarelis, G. (2008). Is the hair follicle necessary for normal wound healing? The Journal of Investigative Dermatology, 128, 1059–1061. https://doi.org/10.1038/jid.2008.86.CrossRefPubMedPubMedCentralGoogle Scholar
- Ito, M., Liu, Y., Yang, Z., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 11, 1351–1354. https://doi.org/10.1038/nm1328.CrossRefPubMedGoogle Scholar
- Jaks, V., Barker, N., Kasper, M., et al. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 40, 1291–1299. https://doi.org/10.1038/ng.239.CrossRefPubMedGoogle Scholar
- Kanda, N., & Watanabe, S. (2004). 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression. The Journal of Investigative Dermatology, 123, 319–328. https://doi.org/10.1111/j.0022-202X.2004.12645.x.CrossRefPubMedGoogle Scholar
- Kang, S., Fisher, G. J., Voorhees, J. J. (2001). Photoaging: Pathogenesis, prevention, and treatment. Clinics in Geriatric Medicine, 17, 643–659, v–vi.CrossRefGoogle Scholar
- Kohen, R. (1999). Skin antioxidants: Their role in aging and in oxidative stress–new approaches for their evaluation. Biomedecine Pharmacotheraphy, 53, 181–192. https://doi.org/10.1016/S0753-3322(99)80087-0.CrossRefGoogle Scholar
- Krutmann, J., & Schroeder, P. (2009). Role of mitochondria in photoaging of human skin: The defective powerhouse model. The Journal of Investigative Dermatology. Symposium Proceedings, 14, 44–49. https://doi.org/10.1038/jidsymp.2009.1.CrossRefPubMedGoogle Scholar
- Kwon, O. S., Yoo, H. G., Han, J. H., et al. (2008). Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Archives of Dermatological Research, 300, 47–52. https://doi.org/10.1007/s00403-007-0812-3.CrossRefPubMedGoogle Scholar
- Langton, A. K., Herrick, S. E., & Headon, D. J. (2008). An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. The Journal of Investigative Dermatology, 128, 1311–1318. https://doi.org/10.1038/sj.jid.5701178.CrossRefPubMedGoogle Scholar
- Li, L., Chen, X., & Gu, H. (2016). The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget, 7, 50682–50697. https://doi.org/10.18632/oncotarget.9330.CrossRefPubMedPubMedCentralGoogle Scholar
- Liu, Y., Lyle, S., Yang, Z., & Cotsarelis, G. (2003). Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. The Journal of Investigative Dermatology, 121, 963–968. https://doi.org/10.1046/j.1523-1747.2003.12600.x.CrossRefPubMedGoogle Scholar
- Marini, A. (2011). Beauty from the inside. Does it really work? Hautarzt Z Dermatol Venerol Verwandte Geb, 62, 614–617. https://doi.org/10.1007/s00105-011-2138-5.CrossRefGoogle Scholar
- Mason, P. J., Wilson, D. B., & Bessler, M. (2005). Dyskeratosis congenita – a disease of dysfunctional telomere maintenance. Current Molecular Medicine, 5, 159–170.CrossRefGoogle Scholar
- Meyskens, F. L., Farmer, P., & Fruehauf, J. P. (2001). Redox regulation in human melanocytes and melanoma. Pigment Cell Research, 14, 148–154.CrossRefGoogle Scholar
- Mitchell, D. L., Volkmer, B., Breitbart, E. W., et al. (2001). Identification of a non-dividing subpopulation of mouse and human epidermal cells exhibiting high levels of persistent ultraviolet photodamage. The Journal of Investigative Dermatology, 117, 590–595. https://doi.org/10.1046/j.0022-202x.2001.01442.x.CrossRefPubMedGoogle Scholar
- Morley, J. E. (2001). Androgens and aging. Maturitas, 38, 61–71. discussion 71–73.CrossRefGoogle Scholar
- Morris, R. J., Liu, Y., Marles, L., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22, 411–417. https://doi.org/10.1038/nbt950.CrossRefPubMedGoogle Scholar
- Nakamura, K.-I., Izumiyama-Shimomura, N., Sawabe, M., et al. (2002). Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium. The Journal of Investigative Dermatology, 119, 1014–1019. https://doi.org/10.1046/j.1523-1747.2002.19523.x.CrossRefPubMedGoogle Scholar
- Nakano, K., Watney, E., & McDougall, J. K. (1998). Telomerase activity and expression of telomerase RNA component and telomerase catalytic subunit gene in cervical cancer. The American Journal of Pathology, 153, 857–864. https://doi.org/10.1016/S0002-9440(10)65627-1.CrossRefPubMedPubMedCentralGoogle Scholar
- Nishikawa, S.-I., & Osawa, M. (2007). Generating quiescent stem cells. Pigment Cell Research, 20, 263–270. https://doi.org/10.1111/j.1600-0749.2007.00388.x.CrossRefPubMedGoogle Scholar
- Nishimura, E. K., Jordan, S. A., Oshima, H., et al. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416, 854–860. https://doi.org/10.1038/416854a.CrossRefPubMedGoogle Scholar
- Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell, 3, 33–43. https://doi.org/10.1016/j.stem.2008.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
- Oshima, H., Rochat, A., Kedzia, C., et al. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104, 233–245.CrossRefGoogle Scholar
- Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3156–3161. https://doi.org/10.1073/pnas.061032098.CrossRefPubMedPubMedCentralGoogle Scholar
- Perez-Losada, J., & Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nature Reviews Cancer, 3, 434–443. https://doi.org/10.1038/nrc1095.CrossRefPubMedGoogle Scholar
- Phillips, T. J., Demircay, Z., & Sahu, M. (2001). Hormonal effects on skin aging. Clinics in Geriatric Medicine, 17, 661–672. vi.CrossRefGoogle Scholar
- Poljsak, B., Dahmane, R., & Godic, A. (2013). Skin and antioxidants. Journal of Cosmetic and Laser Therapy, 15, 107–113. https://doi.org/10.3109/14764172.2012.758380.CrossRefPubMedGoogle Scholar
- Ramirez, R. D., Wright, W. E., Shay, J. W., & Taylor, R. S. (1997). Telomerase activity concentrates in the mitotically active segments of human hair follicles. The Journal of Investigative Dermatology, 108, 113–117.CrossRefGoogle Scholar
- Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441, 1080–1086. https://doi.org/10.1038/nature04958.CrossRefPubMedGoogle Scholar
- Rass, K., & Reichrath, J. (2008). UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Advances in Experimental Medicine and Biology, 624, 162–178. https://doi.org/10.1007/978-0-387-77574-6_13.CrossRefPubMedGoogle Scholar
- Raymond, K., Deugnier, M.-A., Faraldo, M. M., & Glukhova, M. A. (2009). Adhesion within the stem cell niches. Current Opinion in Cell Biology, 21, 623–629. https://doi.org/10.1016/j.ceb.2009.05.004.CrossRefPubMedGoogle Scholar
- Ruiter, D., Bogenrieder, T., Elder, D., & Herlyn, M. (2002). Melanoma-stroma interactions: Structural and functional aspects. The Lancet Oncology, 3, 35–43.CrossRefGoogle Scholar
- Scherfer, C., Han, V. C., Wang, Y., et al. (2013). Autophagy drives epidermal deterioration in a Drosophila model of tissue aging. Aging, 5, 276–287. https://doi.org/10.18632/aging.100549.CrossRefPubMedPubMedCentralGoogle Scholar
- Sellheyer, K., & Krahl, D. (2011). PHLDA1 (TDAG51) is a follicular stem cell marker and differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma. The British Journal of Dermatology, 164, 141–147. https://doi.org/10.1111/j.1365-2133.2010.10045.x.CrossRefPubMedGoogle Scholar
- Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129, 523–536. https://doi.org/10.1016/j.cell.2007.02.045.CrossRefPubMedGoogle Scholar
- Shi, C., Zhu, Y., Su, Y., & Cheng, T. (2006). Stem cells and their applications in skin-cell therapy. Trends in Biotechnology, 24, 48–52. https://doi.org/10.1016/j.tibtech.2005.11.003.CrossRefPubMedGoogle Scholar
- Singh, A. K., Kashyap, M. P., Tripathi, V. K., et al. (2017). Neuroprotection through Rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB Signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and Neurodegeneration in adult rats. Molecular Neurobiology, 54, 5815–5828. https://doi.org/10.1007/s12035-016-0129-3.CrossRefPubMedGoogle Scholar
- Song, X., Narzt, M. S., Nagelreiter, I. M., et al. (2017). Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biology, 11, 219–230. https://doi.org/10.1016/j.redox.2016.12.015.CrossRefPubMedGoogle Scholar
- Suzuki, D., & Senoo, M. (2012). Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors. The Journal of Investigative Dermatology, 132, 2461–2464. https://doi.org/10.1038/jid.2012.165.CrossRefPubMedPubMedCentralGoogle Scholar
- Taylor, R. S., Ramirez, R. D., Ogoshi, M., et al. (1996). Detection of telomerase activity in malignant and nonmalignant skin conditions. The Journal of Investigative Dermatology, 106, 759–765.CrossRefGoogle Scholar
- Taylor, G., Lehrer, M. S., Jensen, P. J., et al. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102, 451–461.CrossRefGoogle Scholar
- Thiele, J. J. (2001). Oxidative targets in the stratum corneum. A new basis for antioxidative strategies. Skin Pharmacology and Applied Skin Physiology, 14(Suppl 1), 87–91. https://doi.org/10.1159/000056395.CrossRefPubMedGoogle Scholar
- Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefGoogle Scholar
- Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., et al. (2008). Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell, 135, 609–622. https://doi.org/10.1016/j.cell.2008.09.034.CrossRefPubMedGoogle Scholar
- Trautinger, F. (2001). Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clinical and Experimental Dermatology, 26, 573–577.CrossRefGoogle Scholar
- Trempus, C. S., Morris, R. J., Bortner, C. D., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. The Journal of Investigative Dermatology, 120, 501–511. https://doi.org/10.1046/j.1523-1747.2003.12088.x.CrossRefPubMedGoogle Scholar
- Urano, R., Sakabe, K., Seiki, K., & Ohkido, M. (1995). Female sex hormone stimulates cultured human keratinocyte proliferation and its RNA- and protein-synthetic activities. Journal of Dermatological Science, 9, 176–184.CrossRefGoogle Scholar
- Volkmer, B., & Greinert, R. (2011). UV and children’s skin. Progress in Biophysics and Molecular Biology, 107, 386–388. https://doi.org/10.1016/j.pbiomolbio.2011.08.011.CrossRefPubMedGoogle Scholar
- Watt, F. M., Lo Celso, C., & Silva-Vargas, V. (2006). Epidermal stem cells: An update. Current Opinion in Genetics & Development, 16, 518–524. https://doi.org/10.1016/j.gde.2006.08.006.CrossRefGoogle Scholar
- Weissman, I. L., Anderson, D. J., & Gage, F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17, 387–403. https://doi.org/10.1146/annurev.cellbio.17.1.387.CrossRefPubMedGoogle Scholar
- Westin, E. R., Chavez, E., Lee, K. M., et al. (2007). Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell, 6, 383–394. https://doi.org/10.1111/j.1474-9726.2007.00288.x.CrossRefPubMedPubMedCentralGoogle Scholar
- Zouboulis, C. C. (2003). Intrinsic skin aging. A critical appraisal of the role of hormones. Hautarzt Z Dermatol Venerol Verwandte Geb, 54, 825–832. https://doi.org/10.1007/s00105-003-0581-7.CrossRefGoogle Scholar