Advertisement

Human Skin Stem Cells, Aging, and Possible Antiaging Strategies

  • Shambhoo Sharan Tripathi
  • Sandeep Singh
  • Abhishek Kumar SinghEmail author
Chapter
  • 270 Downloads

Abstract

Human skin is the largest organ of the body and it provides the first line of the defense system against environmental factors coming in contact by evading our ecosystem. Skin possesses notable regeneration capacity due to the presence of different types of stem cells including epithelial stem cells, melanocyte stem cells, mesenchymal stem-like cells, and progenitor cells. Moreover, the integrity of the skin is mainly maintained by epidermal stem cells. Skin and skin stem cells are more vulnerable toward aging process due to their direct contact with external stimuli including environmental pollutants, infection, and UV irradiation. Aging is a complex and multifactorial process mainly caused by imbalanced redox status, DNA mutation, and telomere shortening. The reactive oxygen species (ROS) overproduction is the major contributor of skin aging as ROS exert oxidative damage to macromolecules and cell organelles, which continuously accumulate and further accelerate aging process. Additionally, UV irradiation induces oxidative stress, overproduction of ROS, and DNA damage which collectively cause photoaging of the skin. This chapter summarizes the overall effects of oxidative stress on skin aging, and several antiaging strategies such as supplementation of nutritional antioxidants and autophagy modulation are also described to slow down the aging process of skin as well as skin diseases.

Keywords

Aging Antioxidant Oxidative stress Photoaging Skin Stem cells 

Notes

Acknowledgments

S. S. Tripathi would like to acknowledge DSKPDF scheme of University Grants Commission, New Delhi, India, for providing financial support (F.4-2/2006(BSR)/BL/17-18/0381).

References

  1. Adjaye, J., Huntriss, J., Herwig, R., et al. (2005). Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells, 23, 1514–1525.  https://doi.org/10.1634/stemcells.2005-0113.CrossRefPubMedGoogle Scholar
  2. Armstrong, B. K., & Kricker, A. (2001). The epidemiology of UV induced skin cancer. Journal of Photochemistry and Photobiology B, 63, 8–18.CrossRefGoogle Scholar
  3. Ashcroft, G. S., Dodsworth, J., van Boxtel, E., et al. (1997). Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nature Medicine, 3, 1209–1215.CrossRefGoogle Scholar
  4. Azzi, L., El-Alfy, M., Martel, C., & Labrie, F. (2005). Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. The Journal of Investigative Dermatology, 124, 22–27.  https://doi.org/10.1111/j.0022-202X.2004.23545.x.CrossRefPubMedGoogle Scholar
  5. Baumann, L. (2007). Skin ageing and its treatment. The Journal of Pathology, 211, 241–251.  https://doi.org/10.1002/path.2098.CrossRefPubMedGoogle Scholar
  6. Behera, S. S., Das, U., Kumar, A., et al. (2017). Chitosan/TiO2composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.  https://doi.org/10.1016/j.ijbiomac.2017.02.017.CrossRefPubMedGoogle Scholar
  7. Berger, M. M. (2005). Can oxidative damage be treated nutritionally? Clinical Nutrition, 24, 172–183.  https://doi.org/10.1016/j.clnu.2004.10.003.CrossRefPubMedGoogle Scholar
  8. Berneburg, M., Gattermann, N., Stege, H., et al. (1997). Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochemistry and Photobiology, 66, 271–275.CrossRefGoogle Scholar
  9. Bickenbach, J. R., Vormwald-Dogan, V., Bachor, C., et al. (1998). Telomerase is not an epidermal stem cell marker and is downregulated by calcium. The Journal of Investigative Dermatology, 111, 1045–1052.  https://doi.org/10.1046/j.1523-1747.1998.00420.x.CrossRefPubMedGoogle Scholar
  10. Blasco, M. A. (2005). Telomeres and human disease: Ageing, cancer and beyond. Nature Reviews Genetics, 6, 611–622.  https://doi.org/10.1038/nrg1656.CrossRefPubMedGoogle Scholar
  11. Boukamp, P. (2005). Skin aging: A role for telomerase and telomere dynamics? Current Molecular Medicine, 5, 171–177.CrossRefGoogle Scholar
  12. Brincat, M. P. (2000). Hormone replacement therapy and the skin: Beneficial effects: The case in favor of it. Acta Obstetricia et Gynecologica Scandinavica, 79, 244–249.CrossRefGoogle Scholar
  13. Chance, B., Sies, H., & Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 59, 527–605.  https://doi.org/10.1152/physrev.1979.59.3.527.CrossRefPubMedGoogle Scholar
  14. Chen, W., Kang, J., Xia, J., et al. (2008). p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. International Journal of Molecular Medicine, 21, 645–653.PubMedGoogle Scholar
  15. Christiano, A. M. (2004). Epithelial stem cells: Stepping out of their niche. Cell, 118, 530–532.  https://doi.org/10.1016/j.cell.2004.08.024.CrossRefPubMedGoogle Scholar
  16. Collins, K., & Mitchell, J. R. (2002). Telomerase in the human organism. Oncogene, 21, 564–579.  https://doi.org/10.1038/sj.onc.1205083.CrossRefPubMedGoogle Scholar
  17. Counter, C. M., Press, W., & Compton, C. C. (2003). Telomere shortening in cultured autografts of patients with burns. Lancet, 361, 1345–1346.  https://doi.org/10.1016/S0140-6736(03)13042-5.CrossRefPubMedGoogle Scholar
  18. Elwood, J. M., & Jopson, J. (1997). Melanoma and sun exposure: An overview of published studies. International Journal of Cancer, 73, 198–203.CrossRefGoogle Scholar
  19. Engelhardt, M., Kumar, R., Albanell, J., et al. (1997). Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood, 90, 182–193.CrossRefGoogle Scholar
  20. Fisher, G. J., Wang, Z. Q., Datta, S. C., et al. (1997). Pathophysiology of premature skin aging induced by ultraviolet light. The New England Journal of Medicine, 337, 1419–1428.  https://doi.org/10.1056/NEJM199711133372003.CrossRefPubMedGoogle Scholar
  21. Fisher, G. J., Kang, S., Varani, J., et al. (2002). Mechanisms of photoaging and chronological skin aging. Archives of Dermatology, 138, 1462–1470.CrossRefGoogle Scholar
  22. Friedrich, U., Griese, E., Schwab, M., et al. (2000). Telomere length in different tissues of elderly patients. Mechanisms of Ageing and Development, 119, 89–99.CrossRefGoogle Scholar
  23. Fuchs, E. (2008). Skin stem cells: Rising to the surface. The Journal of Cell Biology, 180, 273–284.  https://doi.org/10.1083/jcb.200708185.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Funk, W. D., Wang, C. K., Shelton, D. N., et al. (2000). Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Experimental Cell Research, 258, 270–278.  https://doi.org/10.1006/excr.2000.4945.CrossRefPubMedGoogle Scholar
  25. Fusco, D., Colloca, G., Lo Monaco, M. R., & Cesari, M. (2007). Effects of antioxidant supplementation on the aging process. Clinical Interventions in Aging, 2, 377–387.PubMedPubMedCentralGoogle Scholar
  26. Garbe, C., & Leiter, U. (2009). Melanoma epidemiology and trends. Clinics in Dermatology, 27, 3–9.  https://doi.org/10.1016/j.clindermatol.2008.09.001.CrossRefPubMedGoogle Scholar
  27. Gardner, R. L., & Beddington, R. S. (1988). Multi-lineage “stem” cells in the mammalian embryo. Journal of Cell Science, 10, 11–27.CrossRefGoogle Scholar
  28. Garzón, I., Miyake, J., González-Andrades, M., et al. (2013). Wharton’s jelly stem cells: A novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Translational Medicine, 2, 625–632.  https://doi.org/10.5966/sctm.2012-0157.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ito, M., & Cotsarelis, G. (2008). Is the hair follicle necessary for normal wound healing? The Journal of Investigative Dermatology, 128, 1059–1061.  https://doi.org/10.1038/jid.2008.86.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ito, M., Liu, Y., Yang, Z., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 11, 1351–1354.  https://doi.org/10.1038/nm1328.CrossRefPubMedGoogle Scholar
  31. Jaks, V., Barker, N., Kasper, M., et al. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 40, 1291–1299.  https://doi.org/10.1038/ng.239.CrossRefPubMedGoogle Scholar
  32. Kanda, N., & Watanabe, S. (2004). 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression. The Journal of Investigative Dermatology, 123, 319–328.  https://doi.org/10.1111/j.0022-202X.2004.12645.x.CrossRefPubMedGoogle Scholar
  33. Kang, S., Fisher, G. J., Voorhees, J. J. (2001). Photoaging: Pathogenesis, prevention, and treatment. Clinics in Geriatric Medicine, 17, 643–659, v–vi.CrossRefGoogle Scholar
  34. Kohen, R. (1999). Skin antioxidants: Their role in aging and in oxidative stress–new approaches for their evaluation. Biomedecine Pharmacotheraphy, 53, 181–192.  https://doi.org/10.1016/S0753-3322(99)80087-0.CrossRefGoogle Scholar
  35. Krutmann, J., & Schroeder, P. (2009). Role of mitochondria in photoaging of human skin: The defective powerhouse model. The Journal of Investigative Dermatology. Symposium Proceedings, 14, 44–49.  https://doi.org/10.1038/jidsymp.2009.1.CrossRefPubMedGoogle Scholar
  36. Kwon, O. S., Yoo, H. G., Han, J. H., et al. (2008). Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Archives of Dermatological Research, 300, 47–52.  https://doi.org/10.1007/s00403-007-0812-3.CrossRefPubMedGoogle Scholar
  37. Langton, A. K., Herrick, S. E., & Headon, D. J. (2008). An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. The Journal of Investigative Dermatology, 128, 1311–1318.  https://doi.org/10.1038/sj.jid.5701178.CrossRefPubMedGoogle Scholar
  38. Li, L., Chen, X., & Gu, H. (2016). The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget, 7, 50682–50697.  https://doi.org/10.18632/oncotarget.9330.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu, Y., Lyle, S., Yang, Z., & Cotsarelis, G. (2003). Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. The Journal of Investigative Dermatology, 121, 963–968.  https://doi.org/10.1046/j.1523-1747.2003.12600.x.CrossRefPubMedGoogle Scholar
  40. Marini, A. (2011). Beauty from the inside. Does it really work? Hautarzt Z Dermatol Venerol Verwandte Geb, 62, 614–617.  https://doi.org/10.1007/s00105-011-2138-5.CrossRefGoogle Scholar
  41. Mason, P. J., Wilson, D. B., & Bessler, M. (2005). Dyskeratosis congenita – a disease of dysfunctional telomere maintenance. Current Molecular Medicine, 5, 159–170.CrossRefGoogle Scholar
  42. Meyskens, F. L., Farmer, P., & Fruehauf, J. P. (2001). Redox regulation in human melanocytes and melanoma. Pigment Cell Research, 14, 148–154.CrossRefGoogle Scholar
  43. Mitchell, D. L., Volkmer, B., Breitbart, E. W., et al. (2001). Identification of a non-dividing subpopulation of mouse and human epidermal cells exhibiting high levels of persistent ultraviolet photodamage. The Journal of Investigative Dermatology, 117, 590–595.  https://doi.org/10.1046/j.0022-202x.2001.01442.x.CrossRefPubMedGoogle Scholar
  44. Morley, J. E. (2001). Androgens and aging. Maturitas, 38, 61–71. discussion 71–73.CrossRefGoogle Scholar
  45. Morris, R. J., Liu, Y., Marles, L., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22, 411–417.  https://doi.org/10.1038/nbt950.CrossRefPubMedGoogle Scholar
  46. Nakamura, K.-I., Izumiyama-Shimomura, N., Sawabe, M., et al. (2002). Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium. The Journal of Investigative Dermatology, 119, 1014–1019.  https://doi.org/10.1046/j.1523-1747.2002.19523.x.CrossRefPubMedGoogle Scholar
  47. Nakano, K., Watney, E., & McDougall, J. K. (1998). Telomerase activity and expression of telomerase RNA component and telomerase catalytic subunit gene in cervical cancer. The American Journal of Pathology, 153, 857–864.  https://doi.org/10.1016/S0002-9440(10)65627-1.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nishikawa, S.-I., & Osawa, M. (2007). Generating quiescent stem cells. Pigment Cell Research, 20, 263–270.  https://doi.org/10.1111/j.1600-0749.2007.00388.x.CrossRefPubMedGoogle Scholar
  49. Nishimura, E. K., Jordan, S. A., Oshima, H., et al. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416, 854–860.  https://doi.org/10.1038/416854a.CrossRefPubMedGoogle Scholar
  50. Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell, 3, 33–43.  https://doi.org/10.1016/j.stem.2008.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oshima, H., Rochat, A., Kedzia, C., et al. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104, 233–245.CrossRefGoogle Scholar
  52. Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3156–3161.  https://doi.org/10.1073/pnas.061032098.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perez-Losada, J., & Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nature Reviews Cancer, 3, 434–443.  https://doi.org/10.1038/nrc1095.CrossRefPubMedGoogle Scholar
  54. Phillips, T. J., Demircay, Z., & Sahu, M. (2001). Hormonal effects on skin aging. Clinics in Geriatric Medicine, 17, 661–672. vi.CrossRefGoogle Scholar
  55. Poljsak, B., Dahmane, R., & Godic, A. (2013). Skin and antioxidants. Journal of Cosmetic and Laser Therapy, 15, 107–113.  https://doi.org/10.3109/14764172.2012.758380.CrossRefPubMedGoogle Scholar
  56. Ramirez, R. D., Wright, W. E., Shay, J. W., & Taylor, R. S. (1997). Telomerase activity concentrates in the mitotically active segments of human hair follicles. The Journal of Investigative Dermatology, 108, 113–117.CrossRefGoogle Scholar
  57. Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441, 1080–1086.  https://doi.org/10.1038/nature04958.CrossRefPubMedGoogle Scholar
  58. Rass, K., & Reichrath, J. (2008). UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Advances in Experimental Medicine and Biology, 624, 162–178.  https://doi.org/10.1007/978-0-387-77574-6_13.CrossRefPubMedGoogle Scholar
  59. Raymond, K., Deugnier, M.-A., Faraldo, M. M., & Glukhova, M. A. (2009). Adhesion within the stem cell niches. Current Opinion in Cell Biology, 21, 623–629.  https://doi.org/10.1016/j.ceb.2009.05.004.CrossRefPubMedGoogle Scholar
  60. Ruiter, D., Bogenrieder, T., Elder, D., & Herlyn, M. (2002). Melanoma-stroma interactions: Structural and functional aspects. The Lancet Oncology, 3, 35–43.CrossRefGoogle Scholar
  61. Scherfer, C., Han, V. C., Wang, Y., et al. (2013). Autophagy drives epidermal deterioration in a Drosophila model of tissue aging. Aging, 5, 276–287.  https://doi.org/10.18632/aging.100549.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sellheyer, K., & Krahl, D. (2011). PHLDA1 (TDAG51) is a follicular stem cell marker and differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma. The British Journal of Dermatology, 164, 141–147.  https://doi.org/10.1111/j.1365-2133.2010.10045.x.CrossRefPubMedGoogle Scholar
  63. Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129, 523–536.  https://doi.org/10.1016/j.cell.2007.02.045.CrossRefPubMedGoogle Scholar
  64. Shi, C., Zhu, Y., Su, Y., & Cheng, T. (2006). Stem cells and their applications in skin-cell therapy. Trends in Biotechnology, 24, 48–52.  https://doi.org/10.1016/j.tibtech.2005.11.003.CrossRefPubMedGoogle Scholar
  65. Singh, A. K., Kashyap, M. P., Tripathi, V. K., et al. (2017). Neuroprotection through Rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB Signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and Neurodegeneration in adult rats. Molecular Neurobiology, 54, 5815–5828.  https://doi.org/10.1007/s12035-016-0129-3.CrossRefPubMedGoogle Scholar
  66. Song, X., Narzt, M. S., Nagelreiter, I. M., et al. (2017). Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biology, 11, 219–230.  https://doi.org/10.1016/j.redox.2016.12.015.CrossRefPubMedGoogle Scholar
  67. Suzuki, D., & Senoo, M. (2012). Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors. The Journal of Investigative Dermatology, 132, 2461–2464.  https://doi.org/10.1038/jid.2012.165.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Taylor, R. S., Ramirez, R. D., Ogoshi, M., et al. (1996). Detection of telomerase activity in malignant and nonmalignant skin conditions. The Journal of Investigative Dermatology, 106, 759–765.CrossRefGoogle Scholar
  69. Taylor, G., Lehrer, M. S., Jensen, P. J., et al. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102, 451–461.CrossRefGoogle Scholar
  70. Thiele, J. J. (2001). Oxidative targets in the stratum corneum. A new basis for antioxidative strategies. Skin Pharmacology and Applied Skin Physiology, 14(Suppl 1), 87–91.  https://doi.org/10.1159/000056395.CrossRefPubMedGoogle Scholar
  71. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefGoogle Scholar
  72. Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., et al. (2008). Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell, 135, 609–622.  https://doi.org/10.1016/j.cell.2008.09.034.CrossRefPubMedGoogle Scholar
  73. Trautinger, F. (2001). Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clinical and Experimental Dermatology, 26, 573–577.CrossRefGoogle Scholar
  74. Trempus, C. S., Morris, R. J., Bortner, C. D., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. The Journal of Investigative Dermatology, 120, 501–511.  https://doi.org/10.1046/j.1523-1747.2003.12088.x.CrossRefPubMedGoogle Scholar
  75. Urano, R., Sakabe, K., Seiki, K., & Ohkido, M. (1995). Female sex hormone stimulates cultured human keratinocyte proliferation and its RNA- and protein-synthetic activities. Journal of Dermatological Science, 9, 176–184.CrossRefGoogle Scholar
  76. Volkmer, B., & Greinert, R. (2011). UV and children’s skin. Progress in Biophysics and Molecular Biology, 107, 386–388.  https://doi.org/10.1016/j.pbiomolbio.2011.08.011.CrossRefPubMedGoogle Scholar
  77. Watt, F. M., Lo Celso, C., & Silva-Vargas, V. (2006). Epidermal stem cells: An update. Current Opinion in Genetics & Development, 16, 518–524.  https://doi.org/10.1016/j.gde.2006.08.006.CrossRefGoogle Scholar
  78. Weissman, I. L., Anderson, D. J., & Gage, F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17, 387–403.  https://doi.org/10.1146/annurev.cellbio.17.1.387.CrossRefPubMedGoogle Scholar
  79. Westin, E. R., Chavez, E., Lee, K. M., et al. (2007). Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell, 6, 383–394.  https://doi.org/10.1111/j.1474-9726.2007.00288.x.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zouboulis, C. C. (2003). Intrinsic skin aging. A critical appraisal of the role of hormones. Hautarzt Z Dermatol Venerol Verwandte Geb, 54, 825–832.  https://doi.org/10.1007/s00105-003-0581-7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shambhoo Sharan Tripathi
    • 1
    • 2
  • Sandeep Singh
    • 2
  • Abhishek Kumar Singh
    • 3
    Email author
  1. 1.Bioscience and Bioengineering DepartmentIndian Institute of Technology-BombayMumbaiIndia
  2. 2.Department of BiochemistryUniversity of AllahabadAllahabadIndia
  3. 3.Amity Institute of Neuropsychology and NeurosciencesAmity University Uttar PradeshNoidaIndia

Personalised recommendations