Understanding Cellular and Molecular Events of Skin Aging and Cancer: An Integrative Perspective

  • Bhupender Singh
  • Himani Malhotra
  • Dhruv Kumar
  • Syed Faiz Mujtaba
  • Atul Kumar Upadhyay


Aging of the skin is a gradual process, which is associated with changes in the appearance, characteristics, and function of the skin. Skin aging occurs through genetic, lifestyle, dietary, and environmental factors. Within the skin the production of collagen and elastin slows down, dead skin cells do not shed quickly, and the turnover of new skin cells decreases between the age group of 20 and 50. In addition to natural aging premature aging can also result which is due to sunlight exposure, chemical exposure, or other environmental pollutions. Ultraviolet radiation in sunlight damages the elastin and collagen fibers in the skin, which ultimately results in wrinkling of the skin at early stages of life. UV light induces approximately 99% of non-melanoma and 95% of melanoma-type skin cancers in humans. Excessive UV exposure produces genetic mutation that can lead to skin cancer. Skin carcinogenesis by DNA damage is considered a predominant paradigm for UV toxicity. Exposure to UV radiation can activate many oncogenes, which leads to skin cancer. Initiation and progression of skin carcinogenesis mediated by UV radiation involve complex pathways including those of apoptosis, proliferation, autophagy, DNA repair, metabolism, and inflammation. PTEN (phosphatase tensin homolog) is well established as a tumor suppressor gene that induces apoptosis and reduces cell proliferation by inhibition of the P13K/AKT pathway. p53 gene present in humans is being positioned on chromosome number 17 and mutations analyzed in the tumor suppressor gene p53 are one of prior genetic events which lead to the development of cancer in the skin due to exposure to UV rays.

In this chapter we have discussed the mechanism of aging and skin cancer as an integrative phenomenon. We have also discussed briefly regarding the molecular biology methods and computational approaches to study the skin cancer and aging in a greater depth.


Skin cancer Aging Molecular biology Bioinformatics and melanoma 


  1. Bates, D., Maechler, M., & Dai, B. The Ime4 package.Google Scholar
  2. Bernstein, E. F., Brown, D. B., Schwartz, M. D., Kaidbey, K., & Ksenzenko, S. M. (2004, February). The polyhydroxy acid gluconolactone protects against ultraviolet radiation in an in vitro model of cutaneous photoaging. Dermatologic Surgery, 30(2), 189–196.PubMedGoogle Scholar
  3. Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., Halperin, A. J., & Ponten, J. (1991, November 15). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences, 88(22), 10124–10128.CrossRefGoogle Scholar
  4. Calles, C., Schneider, M., Macaluso, F., Benesova, T., Krutmann, J., & Schroeder, P. (2010, June 1). Infrared a radiation influences the skin fibroblast transcriptome: Mechanisms and consequences. Journal of Investigative Dermatology, 130(6), 1524–1536.CrossRefGoogle Scholar
  5. Chen, Y., & Struhl, G. (1996, November 1). Dual roles for patched in sequestering and transducing hedgehog. Cell, 87(3), 553–563.CrossRefGoogle Scholar
  6. Cho, S., Shin, M. H., Kim, Y. K., Seo, J. E., Lee, Y. M., Park, C. H., & Chung, J. H. (2009, August 1). Effects of infrared radiation and heat on human skin aging in vivo. Journal of Investigative Dermatology Symposium Proceedings, 14(1), 15–19.CrossRefGoogle Scholar
  7. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., Benguría, A., Zaballos, A., Flores, J. M., Barbacid, M., & Beach, D. (2005, August). Tumour biology: senescence in premalignant tumours. Nature, 436(7051), 642.CrossRefGoogle Scholar
  8. Daya-Grosjean, L., Robert, C., Drougard, C., Suarez, H., & Sarasin, A. (1993, April 1). High mutation frequency in ras genes of skin tumors isolated from DNA repair deficient xeroderma pigmentosum patients. Cancer Research, 53(7), 1625–1629.PubMedGoogle Scholar
  9. DeBusk, F. L. (1972, April 1). The Hutchinson-Gilford progeria syndrome: Report of 4 cases and review of the literature. The Journal of Pediatrics, 80(4), 697–724.CrossRefGoogle Scholar
  10. Dumaz, N., Drougard, C., Sarasin, A., & Daya-Grosjean, L. (1993, November 15). Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proceedings of the National Academy of Sciences, 90(22), 10529–10533.CrossRefGoogle Scholar
  11. Dunn, J. A., McCance, D. R., Thorpe, S. R., Lyons, T. J., & Baynes, J. W. (1991, February 1). Age-dependent accumulation of N. epsilon.-(carboxymethyl) lysine and N. epsilon.-(carboxymethyl) hydroxylysine in human skin collagen. Biochemistry, 30(5), 1205–1210.CrossRefGoogle Scholar
  12. Dutta, A., Ruppert, J. M., Aster, J. C., & Winchester, E. (1993, September). Inhibition of DNA replication factor RPA by p53. Nature, 365(6441), 79.CrossRefGoogle Scholar
  13. Fisher, G. J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S., & Voorhees, J. J. (2002, November 1). Mechanisms of photoaging and chronological skin aging. Archives of Dermatology, 138(11), 1462–1470.CrossRefGoogle Scholar
  14. Fleming, T. H., Humpert, P. M., Nawroth, P. P., & Bierhaus, A. (2011). Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process–a mini-review. Gerontology, 57(5), 435–443.PubMedGoogle Scholar
  15. Glass, D., Viñuela, A., Davies, M. N., Ramasamy, A., Parts, L., Knowles, D., Brown, A. A., Hedman, Å. K., Small, K. S., Buil, A., & Grundberg, E. (2013, July). Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biology, 14(7), R75.CrossRefGoogle Scholar
  16. Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300.CrossRefGoogle Scholar
  17. Hutchinson, F. (1994, August 1). Induction of tandem-base change mutations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 309(1), 11–15.CrossRefGoogle Scholar
  18. Kolesnikov, N., Hastings, E., Keays, M., Melnichuk, O., Tang, Y. A., Williams, E., Dylag, M., Kurbatova, N., Brandizi, M., Burdett, T., & Megy, K. (2014, October 31). ArrayExpress update – Simplifying data submissions. Nucleic Acids Research, 43(D1), D1113–D1116.CrossRefGoogle Scholar
  19. Kollias, N., & Baqer, A. (1984, May). An experimental study of the changes in pigmentation in human skin in vivo with visible and near infrared light. Photochemistry and Photobiology, 39(5), 651–659.CrossRefGoogle Scholar
  20. Li, C., Chi, S., & Xie, J. (2011, August 1). Hedgehog signaling in skin cancers. Cellular Signalling, 23(8), 1235–1243.CrossRefGoogle Scholar
  21. Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., & Southall, M. D. (2012, July 1). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. Journal of Investigative Dermatology, 132(7), 1901–1907.CrossRefGoogle Scholar
  22. Maier, J. A., Statuto, M., & Ragnotti, G. (1993, September 1). Senescence stimulates U937-endothelial cell interactions. Experimental Cell Research, 208(1), 270–274.CrossRefGoogle Scholar
  23. Marchini, J., Howie, B., Myers, S., McVean, G., & Donnelly, P. (2007, July). A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39(7), 906.CrossRefGoogle Scholar
  24. Maser, R. S., & DePinho, R. A. (2002, July 26). Connecting chromosomes, crisis, and cancer. Science, 297(5581), 565–569.CrossRefGoogle Scholar
  25. Ouhtit, A., Gorny, A., Muller, H. K., Hill, L. L., Owen-Schaub, L., & Ananthaswamy, H. N. (2000, December 1). Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis. The American Journal of Pathology, 157(6), 1975–1981.CrossRefGoogle Scholar
  26. Pinnell, S. R. (2003, January 1). Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 48(1), 1–22.CrossRefGoogle Scholar
  27. Rosengardten, Y., McKenna, T., Grochová, D., & Eriksson, M. (2011 December). Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell, 10(6), 1011–1020.CrossRefGoogle Scholar
  28. Schieke, S. M., Schroeder, P., & Krutmann, J. (2003, October). Cutaneous effects of infrared radiation: From clinical observations to molecular response mechanisms. Photodermatology, Photoimmunology & Photomedicine, 19(5), 228–234.CrossRefGoogle Scholar
  29. Sibley, K., Rollinson, S., Allan, J. M., Smith, A. G., Law, G. R., Roddam, P. L., Skibola, C. F., Smith, M. T., & Morgan, G. J. (2003, August 1). Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Research, 63(15), 4327–4330.PubMedGoogle Scholar
  30. Sklar, L. R., Almutawa, F., Lim, H. W., & Hamzavi, I. (2013). Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochemical & Photobiological Sciences, 12(1), 54–64.CrossRefGoogle Scholar
  31. Stanulis-Praeger, B. (1987, March 1). Cellular senescence revisited: A review. Mechanisms of Ageing and Development, 38(1), 1–48.CrossRefGoogle Scholar
  32. Swisshelm, K., Ryan, K., Lee, X., Tsou, H. C., Peacocke, M., & Sager, R. (1994). Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth & Differentiation, 5(2), 133–141.Google Scholar
  33. Trautinger, F. (2001, October). Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clinical and Experimental Dermatology, 26(7), 573–577.CrossRefGoogle Scholar
  34. Valacchi, G., Fortino, V., & Bocci, V. (2005). The dual action of ozone on the skin. The British Journal of Dermatology, 153, 1096–1100.CrossRefGoogle Scholar
  35. Viña, J., Borrás, C., & Miquel, J. (2007). Theories of ageing. IUBMB Life, 59(4–5), 249–254.CrossRefGoogle Scholar
  36. Wakabayashi, Y., Mao, J. H., Brown, K., Girardi, M., & Balmain, A. (2007, February). Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the patched gene in FVB mice. Nature, 445(7129), 761.CrossRefGoogle Scholar
  37. West, M. D., Pereira-Smith, O. M., & Smith, J. R. (1989, September 1). Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Experimental Cell Research, 184(1), 138–147.CrossRefGoogle Scholar
  38. Xie, J., Murone, M., Luoh, S. M., Ryan, A., Gu, Q., Zhang, C., Bonifas, J. M., Lam, C. W., Hynes, M., Goddard, A., & Rosenthal, A. (1998, January). Activating smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90.CrossRefGoogle Scholar
  39. Zhu, P., Ren, M., Yang, C., Hu, Y. X., Ran, J. M., & Yan, L. (2012, February). Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Experimental Dermatology, 21(2), 123–129.CrossRefGoogle Scholar
  40. Ziegler, A., Jonason, A. S., Leffellt, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., Remington, L., Jacks, T., & Brash, D. E. (1994, December). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bhupender Singh
    • 1
  • Himani Malhotra
    • 1
  • Dhruv Kumar
    • 2
  • Syed Faiz Mujtaba
    • 3
  • Atul Kumar Upadhyay
    • 4
  1. 1.Department of BiotechnologyLovely Professional UniversityJalandharIndia
  2. 2.Amity Institute of Molecular Medicine & Stem Cell Research LabAmity UniversityNoidaIndia
  3. 3.Department of ZoologyShia P.G. CollegeLucknowIndia
  4. 4.Department of BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations