Monitoring the Genotoxic Potential of Sunlight and DNA Photoprotection of Sunscreen

  • James Eduardo Lago Londero
  • André Passaglia Schuch


The effects of climate change and ozone depletion upon solar ultraviolet radiation (UV-R) incidence, as well as the risks of sunlight exposure to human health, need to be better understood. DNA molecule has been identified as the main cellular target of solar UV-R, and the UV-induced DNA damage is considered the initiating step of important biological process, such as the development skin cancers and aging. This chapter focuses on the use of physical and biological methods to measure the solar UV-R incidence and its genotoxic potential. The sunlight’s DNA damage profiles induced at different latitudes are presented, and the use of DNA molecule as well as UV-hypersensitive human skin cells for the evaluation of sunscreen photoprotection is also discussed in the text.


Sunscreen Photoprotection Genotoxic potential 


  1. Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S., & Tourpali, K. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14, 19–52.CrossRefGoogle Scholar
  2. Berces, A., Fekete, A., Gaspar, S., Gróf, P., Rettberg, P., Horneck, G., & Rontó, G. (1999). Biological UV dosimeters in the assessment of the biological hazard from environmental radiation. Journal of Photochemistry and Photobiology. B, 53, 36–43.CrossRefGoogle Scholar
  3. Besaratinia, A., Kim, S. I., & Pfeifer, G. P. (2008). Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. The FASEB Journal, 22, 2379–2392.PubMedCrossRefGoogle Scholar
  4. Blair, I. A. (2008). DNA adducts with lipid peroxidation products. The Journal of Biological Chemistry, 283, 15545–15549.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Davies, M. J. (2016). Protein oxidation and peroxidation. The Biochemical Journal, 473, 805–825.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Diffey, B. (2004). Climate change, ozone depletion and the impact on ultraviolet exposure of human skin. Physics in Medicine and Biology, 49, R1–R11.PubMedCrossRefGoogle Scholar
  7. dos Santos, C. P., Londero, J. E. L., dos Santos, M. B., Feltrin, R. d. S., Loebens, L., Moura, L. B., Cechin, S. Z., & Schuch, A. P. (2018). Sunlight-induced genotoxicity and damage in keratin structures decrease tadpole performance. Journal of Photochemistry and Photobiology B: Biology, 181, 134–142.CrossRefGoogle Scholar
  8. Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440.PubMedCrossRefGoogle Scholar
  9. Galkin, O. N., & Terenetskaya, I. P. (1999). ‘Vitamin D’ biodosimeter: Basic characteristics and potential applications. Journal of Photochemistry and Photobiology. B, 53, 12–19.CrossRefGoogle Scholar
  10. George, A. L., Peat, H. J., & Buma, A. G. (2002). Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica. Photochemistry and Photobiology, 76, 274–280.PubMedCrossRefGoogle Scholar
  11. Girard, P. M., Pozzebon, M., Delacote, F., Douki, T., Smirnova, V., & Sage, E. (2008). Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells. DNA Repair, 7, 1500–1516.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Godar, D. E. (2005). UV doses worldwide. Photochemistry and Photobiology, 81, 736–749.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Graindorge, D., Martineau, S., Machon, C., Arnoux, P., Guitton, J., Francesconi, S., Frochot, C., Sage, E., & Girard, P. M. (2015). Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS One, 10, e0140645.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gróf, P., Gáspár, S., & Rontó, G. (1996). Use of uracil thin layer for measuring biologically effective UV dose. Photochemistry and Photobiology, 64, 800–806.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hegedus, M., Modos, K., Rontó, G., & Fekete, A. (2003). Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochemistry and Photobiology, 78, 213–219.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hoerter, J. D., Ward, C. S., Bale, K. D., Gizachew, A. N., Graham, R., Reynolds, J., Ward, M. E., Choi, C., Kagabo, J. L., Sauer, M., Kuipers, T., Hotchkiss, T., Banner, N., Chellson, R. A., Ohaeri, T., Gant, L., & Vanderhill, L. (2008). Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts. International Journal of Biological Sciences, 4, 63–70.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Holick, M. F. (2007). Vitamin D deficiency. The New England Journal of Medicine, 357, 266–281.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Horvath, R., Kerekgyarto, T., Csucs, G., Gaspar, S., Illyes, P., Rontó, G., & Papp, E. (2001). The effect of UV irradiation on uracil thin layer measured by optical waveguide light mode spectroscopy. Biosensors & Bioelectronics, 16, 17–21.CrossRefGoogle Scholar
  19. Ikehata, H., Kawai, K., Komura, J., Sakatsume, K., Wang, L., Imai, M., Higashi, S., Nikaido, O., Yamamoto, K., Hieda, K., Watanabe, M., Kasai, H., & Ono, T. (2008). UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. The Journal of Investigative Dermatology, 128, 2289–2296.PubMedCrossRefGoogle Scholar
  20. Kappes, U. P., Luo, D., Potter, M., Schulmeister, K., & Runger, T. M. (2006). Short- and longwave UV light (UVB and UVA) induce similar mutations in human skin cells. The Journal of Investigative Dermatology, 126, 667–675.PubMedCrossRefGoogle Scholar
  21. Londero, J. E. L., dos Santos, M. B., & Schuch, A. P. (2019). Impact of solar UV radiation on amphibians: Focus on genotoxic stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 14–21.CrossRefGoogle Scholar
  22. Londero, J. E. L., dos Santos, C. P., Segatto, A. L. A., & Passaglia Schuch, A. (2017). Impacts of UVB radiation on food consumption of forest specialist tadpoles. Ecotoxicology and Environmental Safety, 143, 12–18.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lucas, R. M., Norval, M., Neale, R. E., Young, A. R., de Gruijl, F. R., Takizawa, Y., & van der Leun, J. C. (2015). The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochemical & Photobiological Sciences, 14, 53–87.CrossRefGoogle Scholar
  24. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Bjorn, L. O., & Ilyas, M. (2007). Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochemical & Photobiological Sciences, 6, 218–231.CrossRefGoogle Scholar
  25. Medeiros, M. H. G. (2009). Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors of disease. Challenges in developing sensitive and specific methods for clinical studies. Chemical Research in Toxicology, 22, 419–425.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., & Elkins, J. W. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705), 413–417.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Munakata, N., Ono, M., & Watanabe, S. (1998). Monitoring of solar-UV exposure among schoolchildren in five Japanese cities using spore dosimeter and UV-coloring labels. Japanese Journal of Cancer Research, 89, 235–245.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Munakata, N., Makita, K., Bolsée, D., Gillotay, D., & Horneck, G. (2001). Spore dosimetry of solar UV radiation: Applications to monitoring of daily irradiance and personal exposure. Advances in Space Research, 26, 1995–2003.CrossRefGoogle Scholar
  29. Munakata, N., Cornain, S., Kanoko, M., Mulyadi, K., Lestari, S., Wirohadidjojo, W., Bolsee, D., Kazadzis, S., Meyer-Rochow, V., Schuch, N., Casiccia, C., Kaneko, M., Liu, C. M., Jimbow, K., Saida, T., Nishigori, C., Ogata, K., Inafuku, K., Hieda, K., & Ichihashi, M. (2006). Biological monitoring of solar UV radiation at 17 sites in Asia, Europe and South America from 1999 to 2004. Photochemistry and Photobiology, 82, 689–694.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Munford, V., Castro, L. P., Souto, R., Lerner, L. K., Vilar, J. B., Quayle, C., Asif, H., Schuch, A. P., de Souza, T. A., Ienne, S., Alves, F. I. A., Moura, L. M. S., Galante, P. A. F., Camargo, A. A., Liboredo, R., Pena, S. D. J., Sarasin, A., Chaibub, S. C., & Menck, C. F. M. (2017). A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations. The British Journal of Dermatology, 176, 1270–1278.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571, 19–31.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Radman, M. (2016). Protein damage, radiation sensitivity and aging. DNA Repair, 44, 186–192.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Rastogi, R. P., Richa, A., Kumar, M. B., & Tyagi, R. P. S. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 2010, 592980.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Regan, J. D., & Yoshida, H. (1995). DNA UVB dosimeters. Journal of Photochemistry and Photobiology B: Biology, 31, 57–61.CrossRefGoogle Scholar
  35. Rettberg, P., Horneck, G., Baumstark-Khan, C., & Amanatidis, G. T. (1999). Biological UV dosimetry, a tool for assessing the impact of UV radiation on health and ecossystems. Brussels: European Commission.Google Scholar
  36. Rontó, G., Gáspár, S., & Berces, A. (1992). Phage T7 in biological UV dose measurement. Journal of Photochemistry and Photobiology. B, 12, 285–294.CrossRefGoogle Scholar
  37. Rontó, G., Gáspár, S., & Gugolya, Z. (1994). Ultraviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochemistry and Photobiology, 59, 209–214.CrossRefGoogle Scholar
  38. Runger, T. M., Farahvash, B., Hatvani, Z., & Rees, A. (2012). Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochemical & Photobiological Sciences, 11, 207–215.CrossRefGoogle Scholar
  39. Sage, E., Girard, P. M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochemical & Photobiological Sciences, 11, 74–80.CrossRefGoogle Scholar
  40. Sancar, A., & Tang, M.-S. (1993). Nucleotide excision repair. Photochemistry and Photobiology, 57, 905–921.PubMedCrossRefGoogle Scholar
  41. Schuch, A. P., & Menck, C. F. M. (2010). The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. Journal of Photochemistry and Photobiology. B, 99, 111–116.CrossRefGoogle Scholar
  42. Schuch, A. P., Galhardo, R. S., Lima-Bessa, K. M., Schuch, N. J., & Menck, C. F. (2009). Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochemical & Photobiological Sciences, 8, 111–120.CrossRefGoogle Scholar
  43. Schuch, A. P., Yagura, T., Makita, K., Yamamoto, H., Schuch, N. J., Agnez-Lima, L. F., MacMahon, R. M., & Menck, C. F. (2012a). DNA damage profiles induced by sunlight at different latitudes. Environmental and Molecular Mutagenesis, 53, 198–206.PubMedCrossRefGoogle Scholar
  44. Schuch, A. P., Lago, J. C., Yagura, T., & Menck, C. F. (2012b). DNA dosimetry assessment for sunscreen genotoxic photoprotection. PLoS One, 7, e40344.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Schuch, A. P., Garcia, C. C., Makita, K., & Menck, C. F. (2013). DNA damage as a biological sensor for environmental sunlight. Photochemical & Photobiological Sciences, 12, 1259–1272.CrossRefGoogle Scholar
  46. Schuch, A. P., Moraes, M. C. S., Yagura, T., & Menck, C. F. M. (2014). Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. Environmental Science & Technology, 48, 11584–11590.CrossRefGoogle Scholar
  47. Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology & Medicine, 107, 110–124.CrossRefGoogle Scholar
  48. Wilhelm, S. W., Jeffrey, W. H., Suttle, C. A., & Mitchell, D. L. (2002). Estimation of biologically damaging UV levels in marine surface waters with DNA and viral dosimeters. Photochemistry and Photobiology, 76, 268–273.PubMedCrossRefGoogle Scholar
  49. Wilson, D. M., III, & Bohr, V. A. (2006). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair, 6, 544–559.PubMedCrossRefGoogle Scholar
  50. Wischermann, K., Popp, S., Moshir, S., Scharfetter-Kochanek, K., Wlaschek, M., de Gruijl, F., Hartschuh, W., Greinert, R., Volkmer, B., Faust, A., Rapp, A., Schmezer, P., & Boukamp, P. (2008). UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene, 27, 4269–4280.PubMedCrossRefGoogle Scholar
  51. WMO, Scientific Assessment of Ozone Depletion: 2014. (2015). Global ozone research and monitoring project. Geneva: WMO (World Meteorological Organization).Google Scholar
  52. Yagura, T., Makita, K., Yamamoto, H., Menck, C. F., & Schuch, A. P. (2011). Biological sensors for solar ultraviolet radiation. Sensors, 11, 4277–4294.PubMedCrossRefGoogle Scholar
  53. Yoshida, H., & Regan, J. D. (1997a). UVB DNA dosimeters analyzed by polymerase chain reactions. Photochemistry and Photobiology, 66, 82–88.PubMedCrossRefGoogle Scholar
  54. Yoshida, H., & Regan, J. D. (1997b). Solar UVB dosimetry by amplification of short and long segments in phage lambda DNA. Photochemistry and Photobiology, 66, 672–675.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • James Eduardo Lago Londero
    • 1
  • André Passaglia Schuch
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations