Skin Aging & Cancer pp 129-143 | Cite as
Monitoring the Genotoxic Potential of Sunlight and DNA Photoprotection of Sunscreen
- 237 Downloads
Abstract
The effects of climate change and ozone depletion upon solar ultraviolet radiation (UV-R) incidence, as well as the risks of sunlight exposure to human health, need to be better understood. DNA molecule has been identified as the main cellular target of solar UV-R, and the UV-induced DNA damage is considered the initiating step of important biological process, such as the development skin cancers and aging. This chapter focuses on the use of physical and biological methods to measure the solar UV-R incidence and its genotoxic potential. The sunlight’s DNA damage profiles induced at different latitudes are presented, and the use of DNA molecule as well as UV-hypersensitive human skin cells for the evaluation of sunscreen photoprotection is also discussed in the text.
Keywords
Sunscreen Photoprotection Genotoxic potentialReferences
- Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S., & Tourpali, K. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14, 19–52.CrossRefGoogle Scholar
- Berces, A., Fekete, A., Gaspar, S., Gróf, P., Rettberg, P., Horneck, G., & Rontó, G. (1999). Biological UV dosimeters in the assessment of the biological hazard from environmental radiation. Journal of Photochemistry and Photobiology. B, 53, 36–43.CrossRefGoogle Scholar
- Besaratinia, A., Kim, S. I., & Pfeifer, G. P. (2008). Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. The FASEB Journal, 22, 2379–2392.PubMedCrossRefGoogle Scholar
- Blair, I. A. (2008). DNA adducts with lipid peroxidation products. The Journal of Biological Chemistry, 283, 15545–15549.PubMedPubMedCentralCrossRefGoogle Scholar
- Davies, M. J. (2016). Protein oxidation and peroxidation. The Biochemical Journal, 473, 805–825.PubMedPubMedCentralCrossRefGoogle Scholar
- Diffey, B. (2004). Climate change, ozone depletion and the impact on ultraviolet exposure of human skin. Physics in Medicine and Biology, 49, R1–R11.PubMedCrossRefGoogle Scholar
- dos Santos, C. P., Londero, J. E. L., dos Santos, M. B., Feltrin, R. d. S., Loebens, L., Moura, L. B., Cechin, S. Z., & Schuch, A. P. (2018). Sunlight-induced genotoxicity and damage in keratin structures decrease tadpole performance. Journal of Photochemistry and Photobiology B: Biology, 181, 134–142.CrossRefGoogle Scholar
- Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440.PubMedCrossRefGoogle Scholar
- Galkin, O. N., & Terenetskaya, I. P. (1999). ‘Vitamin D’ biodosimeter: Basic characteristics and potential applications. Journal of Photochemistry and Photobiology. B, 53, 12–19.CrossRefGoogle Scholar
- George, A. L., Peat, H. J., & Buma, A. G. (2002). Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica. Photochemistry and Photobiology, 76, 274–280.PubMedCrossRefGoogle Scholar
- Girard, P. M., Pozzebon, M., Delacote, F., Douki, T., Smirnova, V., & Sage, E. (2008). Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells. DNA Repair, 7, 1500–1516.PubMedCrossRefPubMedCentralGoogle Scholar
- Godar, D. E. (2005). UV doses worldwide. Photochemistry and Photobiology, 81, 736–749.PubMedCrossRefPubMedCentralGoogle Scholar
- Graindorge, D., Martineau, S., Machon, C., Arnoux, P., Guitton, J., Francesconi, S., Frochot, C., Sage, E., & Girard, P. M. (2015). Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS One, 10, e0140645.PubMedPubMedCentralCrossRefGoogle Scholar
- Gróf, P., Gáspár, S., & Rontó, G. (1996). Use of uracil thin layer for measuring biologically effective UV dose. Photochemistry and Photobiology, 64, 800–806.PubMedCrossRefPubMedCentralGoogle Scholar
- Hegedus, M., Modos, K., Rontó, G., & Fekete, A. (2003). Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochemistry and Photobiology, 78, 213–219.PubMedCrossRefPubMedCentralGoogle Scholar
- Hoerter, J. D., Ward, C. S., Bale, K. D., Gizachew, A. N., Graham, R., Reynolds, J., Ward, M. E., Choi, C., Kagabo, J. L., Sauer, M., Kuipers, T., Hotchkiss, T., Banner, N., Chellson, R. A., Ohaeri, T., Gant, L., & Vanderhill, L. (2008). Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts. International Journal of Biological Sciences, 4, 63–70.PubMedPubMedCentralCrossRefGoogle Scholar
- Holick, M. F. (2007). Vitamin D deficiency. The New England Journal of Medicine, 357, 266–281.PubMedCrossRefPubMedCentralGoogle Scholar
- Horvath, R., Kerekgyarto, T., Csucs, G., Gaspar, S., Illyes, P., Rontó, G., & Papp, E. (2001). The effect of UV irradiation on uracil thin layer measured by optical waveguide light mode spectroscopy. Biosensors & Bioelectronics, 16, 17–21.CrossRefGoogle Scholar
- Ikehata, H., Kawai, K., Komura, J., Sakatsume, K., Wang, L., Imai, M., Higashi, S., Nikaido, O., Yamamoto, K., Hieda, K., Watanabe, M., Kasai, H., & Ono, T. (2008). UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. The Journal of Investigative Dermatology, 128, 2289–2296.PubMedCrossRefGoogle Scholar
- Kappes, U. P., Luo, D., Potter, M., Schulmeister, K., & Runger, T. M. (2006). Short- and longwave UV light (UVB and UVA) induce similar mutations in human skin cells. The Journal of Investigative Dermatology, 126, 667–675.PubMedCrossRefGoogle Scholar
- Londero, J. E. L., dos Santos, M. B., & Schuch, A. P. (2019). Impact of solar UV radiation on amphibians: Focus on genotoxic stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 14–21.CrossRefGoogle Scholar
- Londero, J. E. L., dos Santos, C. P., Segatto, A. L. A., & Passaglia Schuch, A. (2017). Impacts of UVB radiation on food consumption of forest specialist tadpoles. Ecotoxicology and Environmental Safety, 143, 12–18.PubMedCrossRefPubMedCentralGoogle Scholar
- Lucas, R. M., Norval, M., Neale, R. E., Young, A. R., de Gruijl, F. R., Takizawa, Y., & van der Leun, J. C. (2015). The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochemical & Photobiological Sciences, 14, 53–87.CrossRefGoogle Scholar
- McKenzie, R. L., Aucamp, P. J., Bais, A. F., Bjorn, L. O., & Ilyas, M. (2007). Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochemical & Photobiological Sciences, 6, 218–231.CrossRefGoogle Scholar
- Medeiros, M. H. G. (2009). Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors of disease. Challenges in developing sensitive and specific methods for clinical studies. Chemical Research in Toxicology, 22, 419–425.PubMedCrossRefPubMedCentralGoogle Scholar
- Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., & Elkins, J. W. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705), 413–417.PubMedCrossRefPubMedCentralGoogle Scholar
- Munakata, N., Ono, M., & Watanabe, S. (1998). Monitoring of solar-UV exposure among schoolchildren in five Japanese cities using spore dosimeter and UV-coloring labels. Japanese Journal of Cancer Research, 89, 235–245.PubMedCrossRefPubMedCentralGoogle Scholar
- Munakata, N., Makita, K., Bolsée, D., Gillotay, D., & Horneck, G. (2001). Spore dosimetry of solar UV radiation: Applications to monitoring of daily irradiance and personal exposure. Advances in Space Research, 26, 1995–2003.CrossRefGoogle Scholar
- Munakata, N., Cornain, S., Kanoko, M., Mulyadi, K., Lestari, S., Wirohadidjojo, W., Bolsee, D., Kazadzis, S., Meyer-Rochow, V., Schuch, N., Casiccia, C., Kaneko, M., Liu, C. M., Jimbow, K., Saida, T., Nishigori, C., Ogata, K., Inafuku, K., Hieda, K., & Ichihashi, M. (2006). Biological monitoring of solar UV radiation at 17 sites in Asia, Europe and South America from 1999 to 2004. Photochemistry and Photobiology, 82, 689–694.PubMedCrossRefPubMedCentralGoogle Scholar
- Munford, V., Castro, L. P., Souto, R., Lerner, L. K., Vilar, J. B., Quayle, C., Asif, H., Schuch, A. P., de Souza, T. A., Ienne, S., Alves, F. I. A., Moura, L. M. S., Galante, P. A. F., Camargo, A. A., Liboredo, R., Pena, S. D. J., Sarasin, A., Chaibub, S. C., & Menck, C. F. M. (2017). A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations. The British Journal of Dermatology, 176, 1270–1278.PubMedCrossRefPubMedCentralGoogle Scholar
- Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571, 19–31.PubMedCrossRefPubMedCentralGoogle Scholar
- Radman, M. (2016). Protein damage, radiation sensitivity and aging. DNA Repair, 44, 186–192.PubMedCrossRefPubMedCentralGoogle Scholar
- Rastogi, R. P., Richa, A., Kumar, M. B., & Tyagi, R. P. S. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 2010, 592980.PubMedPubMedCentralCrossRefGoogle Scholar
- Regan, J. D., & Yoshida, H. (1995). DNA UVB dosimeters. Journal of Photochemistry and Photobiology B: Biology, 31, 57–61.CrossRefGoogle Scholar
- Rettberg, P., Horneck, G., Baumstark-Khan, C., & Amanatidis, G. T. (1999). Biological UV dosimetry, a tool for assessing the impact of UV radiation on health and ecossystems. Brussels: European Commission.Google Scholar
- Rontó, G., Gáspár, S., & Berces, A. (1992). Phage T7 in biological UV dose measurement. Journal of Photochemistry and Photobiology. B, 12, 285–294.CrossRefGoogle Scholar
- Rontó, G., Gáspár, S., & Gugolya, Z. (1994). Ultraviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochemistry and Photobiology, 59, 209–214.CrossRefGoogle Scholar
- Runger, T. M., Farahvash, B., Hatvani, Z., & Rees, A. (2012). Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochemical & Photobiological Sciences, 11, 207–215.CrossRefGoogle Scholar
- Sage, E., Girard, P. M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochemical & Photobiological Sciences, 11, 74–80.CrossRefGoogle Scholar
- Sancar, A., & Tang, M.-S. (1993). Nucleotide excision repair. Photochemistry and Photobiology, 57, 905–921.PubMedCrossRefGoogle Scholar
- Schuch, A. P., & Menck, C. F. M. (2010). The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. Journal of Photochemistry and Photobiology. B, 99, 111–116.CrossRefGoogle Scholar
- Schuch, A. P., Galhardo, R. S., Lima-Bessa, K. M., Schuch, N. J., & Menck, C. F. (2009). Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochemical & Photobiological Sciences, 8, 111–120.CrossRefGoogle Scholar
- Schuch, A. P., Yagura, T., Makita, K., Yamamoto, H., Schuch, N. J., Agnez-Lima, L. F., MacMahon, R. M., & Menck, C. F. (2012a). DNA damage profiles induced by sunlight at different latitudes. Environmental and Molecular Mutagenesis, 53, 198–206.PubMedCrossRefGoogle Scholar
- Schuch, A. P., Lago, J. C., Yagura, T., & Menck, C. F. (2012b). DNA dosimetry assessment for sunscreen genotoxic photoprotection. PLoS One, 7, e40344.PubMedPubMedCentralCrossRefGoogle Scholar
- Schuch, A. P., Garcia, C. C., Makita, K., & Menck, C. F. (2013). DNA damage as a biological sensor for environmental sunlight. Photochemical & Photobiological Sciences, 12, 1259–1272.CrossRefGoogle Scholar
- Schuch, A. P., Moraes, M. C. S., Yagura, T., & Menck, C. F. M. (2014). Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. Environmental Science & Technology, 48, 11584–11590.CrossRefGoogle Scholar
- Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology & Medicine, 107, 110–124.CrossRefGoogle Scholar
- Wilhelm, S. W., Jeffrey, W. H., Suttle, C. A., & Mitchell, D. L. (2002). Estimation of biologically damaging UV levels in marine surface waters with DNA and viral dosimeters. Photochemistry and Photobiology, 76, 268–273.PubMedCrossRefGoogle Scholar
- Wilson, D. M., III, & Bohr, V. A. (2006). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair, 6, 544–559.PubMedCrossRefGoogle Scholar
- Wischermann, K., Popp, S., Moshir, S., Scharfetter-Kochanek, K., Wlaschek, M., de Gruijl, F., Hartschuh, W., Greinert, R., Volkmer, B., Faust, A., Rapp, A., Schmezer, P., & Boukamp, P. (2008). UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene, 27, 4269–4280.PubMedCrossRefGoogle Scholar
- WMO, Scientific Assessment of Ozone Depletion: 2014. (2015). Global ozone research and monitoring project. Geneva: WMO (World Meteorological Organization).Google Scholar
- Yagura, T., Makita, K., Yamamoto, H., Menck, C. F., & Schuch, A. P. (2011). Biological sensors for solar ultraviolet radiation. Sensors, 11, 4277–4294.PubMedCrossRefGoogle Scholar
- Yoshida, H., & Regan, J. D. (1997a). UVB DNA dosimeters analyzed by polymerase chain reactions. Photochemistry and Photobiology, 66, 82–88.PubMedCrossRefGoogle Scholar
- Yoshida, H., & Regan, J. D. (1997b). Solar UVB dosimetry by amplification of short and long segments in phage lambda DNA. Photochemistry and Photobiology, 66, 672–675.PubMedCrossRefPubMedCentralGoogle Scholar