Skip to main content

Flood and Infectious Disease Risk Assessment

  • Chapter
  • First Online:
Health in Ecological Perspectives in the Anthropocene

Abstract

Increasing flooding frequencies enhance the likelihood of exposures to water-associated infectious diseases (via direct exposures and indirectly via impacts on source drinking, irrigation, and recreational waters). The application of quantitative microbial risk assessment (QMRA) is described here with a view to aid in the prioritization of flood planning, mitigation, and control strategies. Likely key hazards are described that can be used as reference pathogens, with exposure estimates aided by use of fecal indicator microorganisms and surrogates for treatment reduction performance. Known dose-response models are then applied to characterize risks from various exposure scenarios to fecal and environmental (saprozoic) pathogens. The importance of respiratory and wound infectious agents is highlighted (such as saprozoic Legionella pneumophila, nontuberculous mycobacteria, and Pseudomonas aeruginosa), as is the use of sensitivity analyses to prioritize pathways and scenarios. Immerging issues such as antimicrobial-resistant (AMR) pathogens and resistance genes within environmental bacteria are also being considered within a QMRA framework, but specific dose-response information is still lacking to fully quantify these threats and some groups of pathogens described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrose J, Hampton LM, Fleming-Dutra KE, Marten C, Mc CC, Perry C, Clemmons NA, Mc CZ, Peik S, Mancuso J, Brown E, Kozak N, Travis T, Lucas C, Fields B, Hicks L, Cersovsky SB (2014) Large outbreak of Legionnaires’ disease and Pontiac fever at a military base. Epidemiol Infect 142:2336–2346

    Article  CAS  Google Scholar 

  2. Amissah NA, Gryseels S, Tobias NJ, Ravadgar B, Suzuki M, Vandelannoote K, Durnez L, Leirs H, Stinear TP, Portaels F, Ablordey A, Eddyani M (2014) Investigating the role of free-living amoebae as a reservoir for Mycobacterium ulcerans. PLoS Negl Trop Dis 8:e3148

    Article  CAS  Google Scholar 

  3. Amos GC, Gozzard E, Carter CE, Mead A, Bowes MJ, Hawkey PM, Zhang L, Singer AC, Gaze WH, Wellington EM (2015) Validated predictive modelling of the environmental resistome. ISME J 9:1467–1476

    Article  CAS  Google Scholar 

  4. Apisarnthanarak A, Warren DK, Mayhall CG (2013) Healthcare-associated infections and their prevention after extensive flooding. Curr Opin Infect Dis 26:359–365

    Article  Google Scholar 

  5. Ashbolt NJ (2015) Environmental (saprozoic) pathogens of engineered water systems: understanding their ecology for risk assessment and management. Pathogens 4:390–405

    Article  Google Scholar 

  6. Ashbolt NJ, Amézquita A, Backhaus T, Borriello SP, Brandt K, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence J, Larsson DGJ, McEwen SA, Ryan J, Schönfeld J, Silley P, Snape JR, van den Eede C, Topp E (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1001

    Article  Google Scholar 

  7. Ashbolt NJ, Pruden A, Miller JH, Riquelme MV, Maile-Moskowitz A (2018) Antimicrobial resistance: fecal sanitation strategies for combatting a global public health threat. In: Rose JB, Jiménez-Cisneros B (eds) Global Water Pathogens Project. (A. Pruden, N. Ashbolt and J. Miller (eds) Part 3 Bacteria) http://www.waterpathogens.org. UNESCO, Michigan State University, E. Lansing, MI

  8. Ashbolt NJ, Schoen ME, Soller JA, Roser DJ (2010) Predicting pathogen risks to aid beach management: the real value of quantitative microbial risk assessment (QMRA). Water Res 44:4692–4703

    Article  CAS  Google Scholar 

  9. Bodle EE, Cunningham JA, Della-Latta P, Schluger NW, Saiman L (2008) Epidemiology of nontuberculous mycobacteria in patients without HIV infection, New York City. Emerg Infect Dis 14:390–396

    Article  Google Scholar 

  10. Calero-Cáceres W, Muniesa M (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 95:11–18

    Article  CAS  Google Scholar 

  11. Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D (2013) Extreme water-related weather events and waterborne disease. Epidemiol Infect 141:671–686

    Article  CAS  Google Scholar 

  12. Castor ML, Wagstrom EA, Danila RN, Smith KE, Naimi TS, Besser JM, Peacock KA, Juni BA, Hunt JM, Bartkus JM, Kirkhorn SR, Lynfield R (2005) An outbreak of Pontiac fever with respiratory distress among workers performing high-pressure cleaning at a sugar-beet processing plant. J Infect Dis 191:1530–1537

    Article  Google Scholar 

  13. CDC (2013) Incidence and trends of infection with pathogens transmitted commonly through food — foodborne diseases active surveillance network, 10 U.S. Sites, 1996–2012. Morbidity & Mortality Weekly Report 62:283–287

    Google Scholar 

  14. Chou MP, Clements AC, Thomson RM (2014) A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Microbiol 14:279

    Article  CAS  Google Scholar 

  15. Cleaveland S, Shaw DJ, Mfinanga SG, Shirima G, Kazwala RR, Eblate E, Sharp M (2007) Mycobacterium bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis (Edinb) 87:30–43

    Article  Google Scholar 

  16. Collier SA, Stockman LJ, Hicks LA, Garrison LE, Zhou FJ, Beach MJ (2012) Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol Infect 140:2003–2013

    Article  CAS  Google Scholar 

  17. Crabtree KD, Gerba CP, Rose JB, Haas CN (1997) Waterborne adenovirus – A risk assessment. Water Sci Technol 35:1–6

    Article  CAS  Google Scholar 

  18. de Man H, Bouwknegt M, van Heijnsbergen E, Leenen EJ, van Knapen F, de Roda Husman AM (2014a) Health risk assessment for splash parks that use rainwater as source water. Water Res 54:254–261

    Article  CAS  Google Scholar 

  19. de Man H, Mughini Gras L, Schimmer B, Friesema IHM, de Roda Husman AM, Van Pelt W (2016) Gastrointestinal, influenza-like illness and dermatological complaints following exposure to floodwater: a cross-sectional survey in The Netherlands. Epidemiol Infect 144:1445–1454

    Article  Google Scholar 

  20. de Man H, van den Berg HH, Leenen EJ, Schijven JF, Schets FM, van der Vliet JC, van Knapen F, de Roda Husman AM (2014b) Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res 48:90–99

    Article  CAS  Google Scholar 

  21. Della Rossa P, Tantrakarnapa K, Sutdan D, Kasetsinsombat K, Cosson JF, Supputamongkol Y, Chaisiri K, Tran A, Supputamongkol S, Binot A, Lajaunie C, Morand S (2016) Environmental factors and public health policy associated with human and rodent infection by leptospirosis: a land cover-based study in Nan province, Thailand. Epidemiol Infect 144:1550–1562

    Article  CAS  Google Scholar 

  22. DeLorenzo ME, Thompson B, Cooper E, Moore J, Fulton MH (2012) A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek. Environ Monit Assess 184:343–359

    Article  CAS  Google Scholar 

  23. Dura G, Pandics T, Kadar M, Krisztalovics K, Kiss Z, Bodnar J, Asztalos A, Papp E (2010) Environmental health aspects of drinking water-borne outbreak due to karst flooding: case study. J Water Health 8:513–520

    Article  CAS  Google Scholar 

  24. Farkas A, Bocoş B, Butiuc-Keul A (2016) Antibiotic resistance and intI1 carriage in waterborne Enterobacteriaceae. Water Air Soil Pollut 227:7

    Article  CAS  Google Scholar 

  25. Garner E, Zhu N, Strom L, Edwards M, Pruden A (2016) A human exposome framework for guiding risk management and holistic assessment of recycled water quality. Environ Sci: Water Res Technol 2(4):580–598

    Google Scholar 

  26. Gondim-Porto C, Platero L, Nadal I, Navarro-Garcia F (2016) Fate of classical faecal bacterial markers and ampicillin-resistant bacteria in agricultural soils under Mediterranean climate after urban sludge amendment. Sci Total Environ 565:200–210

    Article  CAS  Google Scholar 

  27. Haagsma JA, Polinder S, Stein CE, Havelaar AH (2013) Systematic review of foodborne burden of disease studies: quality assessment of data and methodology. Int J Food Microbiol 166:34–47

    Article  Google Scholar 

  28. Haas CN (1983) Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am J Epidemiol 118:573–582

    Article  CAS  Google Scholar 

  29. Haas CN, Rose JB, Gerba CP (1999) Quantitative microbial risk assessment. Wiley, New York

    Google Scholar 

  30. Hamilton KA, Haas CN (2016) Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: research gaps and a new framework. Environ Sci: Water Res Technol 2:599–613

    Google Scholar 

  31. Hamilton KA, Weir MH, Haas CN (2016) Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res 109:310–326

    Article  CAS  Google Scholar 

  32. Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A (2014) Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 38:1–40

    Article  CAS  Google Scholar 

  33. Hocquet D, Muller A, Bertrand X (2016) What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 93:395–402

    Article  CAS  Google Scholar 

  34. Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T (2016) Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res 91:1–10

    Article  CAS  Google Scholar 

  35. Kazama S, Aizawa T, Watanabe T, Ranjan P, Gunawardhana L, Amano A (2011) A quantitative risk assessment of waterborne infectious disease in the inundation area of a tropical monsoon region. Sustain Sci 7:45–54

    Article  Google Scholar 

  36. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Dopfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 12:e1001921

    Article  Google Scholar 

  37. Kool JL, Warwick MC, Pruckler JM, Brown EW, Butler JC (1998) Outbreak of Legionnaires’ disease at a bar after basement flooding. Lancet 351:1030

    Article  CAS  Google Scholar 

  38. Landier J, Gaudart J, Carolan K, Lo Seen D, Guegan JF, Eyangoh S, Fontanet A, Texier G (2014) Spatio-temporal patterns and landscape-associated risk of Buruli ulcer in Akonolinga, Cameroon. PLoS Negl Trop Dis 8:e3123

    Article  Google Scholar 

  39. Lau CL, Watson CH, Lowry JH, David MC, Craig SB, Wynwood SJ, Kama M, Nilles EJ (2016) Human leptospirosis infection in Fiji: an eco-epidemiological approach to identifying risk factors and environmental drivers for transmission. PLoS Negl Trop Dis 10:e0004405

    Article  Google Scholar 

  40. Levy K, Woster AP, Goldstein RS, Carlton EJ (2016) Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ Sci Technol 50:4905–4922

    Article  CAS  Google Scholar 

  41. Messner MJ, Berger P (2016) Cryptosporidium infection risk: results of new dose-response modeling. Risk Anal 36:1969–1982. https://doi.org/10.1111/risa.12541

    Article  Google Scholar 

  42. Messner MJ, Berger P, Nappier SP (2014) Fractional Poisson--a simple dose-response model for human norovirus. Risk Anal 34:1820–1829

    Article  Google Scholar 

  43. Müller A, Stephan R, Nüesch-Inderbinen M (2016) Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci Total Environ 541:667–672

    Article  CAS  Google Scholar 

  44. Muller D, Edwards ML, Smith DW (1983) Changes in iron and transferrin levels and body temperature in experimental airborne legionellosis. J Infect Dis 147:302–307

    Article  CAS  Google Scholar 

  45. Munang’andu HM, Banda F, Siamudaala VM, Munyeme M, Kasanga CJ, Hamududu B (2012) The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J Vet Sci 13:293–298

    Article  Google Scholar 

  46. O’Brien R, Mackintosh CG, Bakker D, Kopecna M, Pavlik I, Griffin JF (2006) Immunological and molecular characterization of susceptibility in relationship to bacterial strain differences in Mycobacterium avium subsp. paratuberculosis infection in the red deer (Cervus elaphus). Infect Immun 74:3530–3537

    Article  CAS  Google Scholar 

  47. O’Neill J (2016) Review on antimicrobial resistance. Tackling drug-resistant infections globally. Welcome Trust and HM Government, London

    Google Scholar 

  48. Perez-Gracia MT, Suay B, Mateos-Lindemann ML (2014) Hepatitis E: an emerging disease. Infect Genet Evol 22:40–59

    Article  Google Scholar 

  49. Petterson S, Grondahl-Rosado R, Nilsen V, Myrmel M, Robertson LJ (2015) Variability in the recovery of a virus concentration procedure in water: implications for QMRA. Water Res 87:79–86

    Article  CAS  Google Scholar 

  50. Petterson SR, Ashbolt NJ (2016a) 3.5.2 Exposure assessment. In: Yates MV, Nakatsu CH, Miller RV, Pillai SD (eds) Manual of environmental microbiology, 4th edn. ASM Press, Washington, DC, pp 3.5.2-1–3.5.2-18

    Google Scholar 

  51. Petterson SR, Ashbolt NJ (2016b) QMRA and water safety management: review of application in drinking water systems. J Water Health 14:571–589

    Article  CAS  Google Scholar 

  52. Petterson SR, Dumoutier N, Loret JF, Ashbolt NJ (2009) Quantitative Bayesian predictions of source water concentration for QMRA from presence/absence data for E. coli O157:H7. Water Sci Technol 59:2245–2252

    Article  CAS  Google Scholar 

  53. Petterson SR, Mitchell VG, Davies CM, O’Connor J, Kaucner C, Roser D, Ashbolt N (2016) Evaluation of three full-scale stormwater treatment systems with respect to water yield, pathogen removal efficacy and human health risk from faecal pathogens. Sci Total Environ 543:691–702

    Article  CAS  Google Scholar 

  54. Prasad B, Hamilton KA, Haas CN (2017) Incorporating time-dose-response into Legionella outbreak models. Risk Anal 37:291–304

    Article  Google Scholar 

  55. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Graham KKBDW, Lazorchak JR, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu Y-G (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885

    Article  Google Scholar 

  56. Regli S, Odom R, Cromwell J, Lustic M, Blank V (1999) Benefits and costs of the IESWTR. J AWWA 91:148–158

    Article  CAS  Google Scholar 

  57. Rose JB, Gerba CP (1991) Use of risk assessment for development of microbial standards. Water Sci Technol 24:29–34

    Article  Google Scholar 

  58. Roser DJ, Van Den Akker B, Boase S, Haas CN, Ashbolt NJ, Rice SA (2015) Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis. Epidemiol Infect 143:1524–1537

    Article  CAS  Google Scholar 

  59. Sakamoto R, Ohno A, Nakahara T, Satomura K, Iwanaga S, Kouyama Y, Kura F, Kato N, Matsubayashi K, Okumiy K, Yamaguchi K (2009) Legionella pneumophila in rainwater on roads. Emerg Infect Dis 15:1295–1297

    Article  Google Scholar 

  60. Sales-Ortells H, Medema G (2014) Screening-level microbial risk assessment of urban water locations: a tool for prioritization. Environ Sci Technol 48:9780–9789

    Article  CAS  Google Scholar 

  61. Schalk JA, Docters van Leeuwen AE, Lodder WJ, de Man H, Euser S, den Boer JW, de Roda Husman AM (2012) Isolation of Legionella pneumophila from pluvial floods by amoebal coculture. Appl Environ Microbiol 78:4519–4521

    Article  CAS  Google Scholar 

  62. Schalk JA, Euser SM, van Heijnsbergen E, Bruin JP, den Boer JW, de Roda Husman AM (2014) Soil as a source of Legionella pneumophila sequence type 47. Int J Infect Dis 27C:18–19

    Article  Google Scholar 

  63. Schoen ME, Ashbolt NJ, Jahne MA, Garland J (2017a) Risk-based enteric pathogen reduction targets for non-potable and direct potable use of roof runoff, stormwater, greywater, and wastewater. Microbial Risk Anal 5:32–43

    Article  Google Scholar 

  64. Schoen ME, Soller JA, Ashbolt NJ (2011) Evaluating the importance of faecal sources in human-impacted waters. Water Res 45:2670–2680

    Article  CAS  Google Scholar 

  65. Schoen ME, Xue X, Hawkins TR, Ashbolt NJ (2014) Comparative human health risk analysis of coastal community water and waste service options. Environ Sci Technol 48:9728–9736

    Article  CAS  Google Scholar 

  66. Schoen ME, Xue X, Wood A, Hawkins TR, Garland J, Ashbolt NJ (2017b) Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options. Water Res 109:186–195

    Article  CAS  Google Scholar 

  67. Setzer C, Domino ME (2004) Medicaid outpatient utilization for waterborne pathogenic illness following Hurricane Floyd. Public Health Rep 119:472–478

    Article  Google Scholar 

  68. Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714

    Article  CAS  Google Scholar 

  69. Signor RS, Ashbolt NJ, Roser DJ (2007) Microbial risk implications of rainfall-induced runoff events entering a reservoir used as a drinking-water source. J Water Supply Res Technol AQUA 56:515–531

    Article  CAS  Google Scholar 

  70. Soller J, Bartrand T, Ravenscroft J, Molina M, Whelan G, Schoen M, Ashbolt N (2015) Estimated human health risks from recreational exposures to stormwater runoff containing animal fecal material. Environ Modelling Softw 72:21–32

    Article  Google Scholar 

  71. Soller JA, Eftim S, Wade TJ, Ichida AM, Clancy JL, Johnson TB, Schwab K, Ramirez-Toro G, Nappier S, Ravenscroft JE (2016) Use of quantitative microbial risk assessment to improve interpretation of a recreational water epidemiological study. Microbial Risk Anal 1:2–11

    Article  Google Scholar 

  72. Stevens DP, Surapaneni A, Thodupunuri R, O’Connor NA, Smith D (2017) Helminth log reduction values for recycling water from sewage for the protection of human and stock health. Water Res 125:501–511

    Article  CAS  Google Scholar 

  73. Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395

    Article  Google Scholar 

  74. Teunis P, Schijven J, Rutjes S (2016) A generalized dose-response relationship for adenovirus infection and illness by exposure pathway. Epidemiol Infect:1–13

    Google Scholar 

  75. Teunis P, Van den Brandhof W, Nauta M, Wagenaar J, Van den Kerkhof H, Van Pelt W (2005) A reconsideration of the Campylobacter dose-response relation. Epidemiol Infect 133:583–592

    Article  CAS  Google Scholar 

  76. Teunis PF, Moe CL, Liu P, Miller SE, Lindesmith L, Baric RS, Le Pendu J, Calderon RL (2008) Norwalk virus: how infectious is it? J Med Virol 80:1468–1476

    Article  Google Scholar 

  77. Teunis PF, Ogden ID, Strachan NJ (2007) Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure. Epidemiol Infect:1–10

    Google Scholar 

  78. Teunis PFM, Havelaar AH (2000) The Beta Poisson dose-response model is not a single-hit model. Risk Anal 20:513–520

    Article  CAS  Google Scholar 

  79. Thumbi SM, Njenga MK, Marsh TL, Noh S, Otiang E, Munyua P, Ochieng L, Ogola E, Yoder J, Audi A, Montgomery JM, Bigogo G, Breiman RF, Palmer GH, McElwain TF (2015) Linking human health and livestock health: a “one-health” platform for integrated analysis of human health, livestock health, and economic welfare in livestock dependent communities. PLoS One 10:e0120761

    Article  CAS  Google Scholar 

  80. U.S. EPA (2012) Recreational water quality criteria. Office of Water Report 820-F-12-058. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  81. van Heijnsbergen E, de Roda Husman AM, Lodder WJ, Bouwknegt M, Docters van Leeuwen AE, Bruin JP, Euser SM, den Boer JW, Schalk JA (2014) Viable Legionella pneumophila bacteria in natural soil and rainwater puddles. J Appl Microbiol 117:882–890

    Article  Google Scholar 

  82. Vose D (2008) Risk analysis: a quantitative guide. Wiley, Chichester

    Google Scholar 

  83. WHO (2005) Flooding and communicable diseases fact sheet. Risk assessment and preventive measures (WHO/CDS/2005.35). World Health Organization. http://www.who.int/diseasecontrol_emergencies/guidelines/CDs%20and%20flooding%20fact%20sheet_2005.pdf?ua=1

  84. WHO (2008) Guidelines for drinking-water quality. Second amendment to the third edition. Volume 1 recommendations. World Health Organization, Geneva

    Google Scholar 

  85. WHO (2016) Quantitative microbial risk assessment: application for water safety management (updated November 2016). World Health Organization, Geneva

    Google Scholar 

  86. Yard EE, Murphy MW, Schneeberger C, Narayanan J, Hoo E, Freiman A, Lewis LS, Hill VR (2014) Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1236–1243

    Article  CAS  Google Scholar 

  87. Yugo DM, Meng XJ (2013) Hepatitis E virus: foodborne, waterborne and zoonotic transmission. Int J Environ Res Public Health 10:4507–4533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Ashbolt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashbolt, N.J. (2019). Flood and Infectious Disease Risk Assessment. In: Watanabe, T., Watanabe, C. (eds) Health in Ecological Perspectives in the Anthropocene. Springer, Singapore. https://doi.org/10.1007/978-981-13-2526-7_12

Download citation

Publish with us

Policies and ethics