Skip to main content

A Parallel Implementation of the Discrete Wavelet Transform Applied to Real-Time EEG Signal Filtering

  • Conference paper
  • First Online:
XXVI Brazilian Congress on Biomedical Engineering

Abstract

A Brain-Computer Interface (BCI) is a direct communication pathway between the human brain and an external device or machine. Those systems can be controlled by invasive or non-invasive brain signals. Examples of non-invasive systems are Electroencephalography-based (EEG) BCIs for Motor Imagery (MI) detection. Field Programmable Gate Arrays (FPGAs) could be used in online BCIs for parallel computation purposes. In this work, an FPGA-based BCI was developed in order to decompose a raw EEG signal into its different types of rhythms such as beta (β), alpha (α), theta (θ), and delta (δ), by using filter banks based on the Daubechies-4 Discrete Wavelet Transform (DWT). The designed system generates all coefficients in real-time and uses both serial and video communication interfaces for visualization and analysis purposes. The input signals, used for testing, came from an open source database. For validation purposes, an off-line signal processing confirmed the accuracy of results. The outcome showed that the use of multi-rate filters resulted in low hardware resources consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huggins, J., Wren, P., Gruis, K.: What would brain-computer interface users want? Opinions and priorities of potential users with amyotropic lateral sclerosis. Amyotroph. Lateral Scler. 12(5), 318–324 (2011)

    Article  Google Scholar 

  2. Anupama, H., Cauvery, N., Lingaraju, G.: Brain computer interface and its types—a study. Int. J. Adv. Eng. Technol. 3(2), 739–745 (2012)

    Google Scholar 

  3. Hsu, H.: Motor imagery EEG discrimination using the correlation of wavelet features. Clin. EEG Neurosci. 46(2), 94–99 (2014)

    Article  Google Scholar 

  4. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1–2), 169–174 (2005)

    Article  Google Scholar 

  5. Bhrattacharyya, S., Khasnobish, A., Konar, A., Tibarewala, D. N., Nagar, A. K.: Performance analysis of left/right hand movement classification from EEG signal by intelligent algorithms. In: IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind and Brain, pp. 1–8, Paris (2011)

    Google Scholar 

  6. Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., Edlinger, G.: How many people are able to control a P300-based brain-computer interface (BCI). Neurosci. Lett. 462(1), 94–98 (2009)

    Article  Google Scholar 

  7. Lotte, F.: Brain computer interfaces for 3D games: hype or hope?. In: Proceedings of 6th International Conference on Foundations of Digital Games—FDG’11, pp. 325–327, Bordeaux (2011)

    Google Scholar 

  8. Hwang, H.J., Kim, S., Choi, S., Im, C.H.: EEG-based brain-computer interfaces: a thorough literature survey. Int. J. Hum.-Comput. Interact. 29(12), 814–826 (2013)

    Article  Google Scholar 

  9. Curran, E.A., Stokes, M.J.: Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003)

    Article  Google Scholar 

  10. Shafique, M.F.M., Khan, Z.H.: Towards a low cost brain-computer interface for real time control of a 2 DOF robotic arm. In: International Conference on Emerging Technologies (ICET), pp. 1–6. Peshawar (2015)

    Google Scholar 

  11. Kranczioch, C., Zich, C., Schierholz, I., Sterr, A.: Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int. J. Psychophysiol. 91(1), 10–15 (2014)

    Google Scholar 

  12. Lachaux, J.-P., Lutz, A., Rudrauf, D., Cosmelli, D., Quyen, M.L.V., Martinerie, J., Varela, F.: Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol. Clin. 32, 157–174 (2002)

    Article  Google Scholar 

  13. Klein, A., Sauer, T., Jedynak, A., Skrandies, W.: Conventional and wavelet coherence applied to sensory-evoked electrical brain activity. Biomed. Eng. IEEE Trans. 53, 266–272 (2006)

    Article  Google Scholar 

  14. Sakkalis, V., Oikonomou, T., Pachou, E., Tollis, I., Micheloyannis, S., Zervakis, M.: Time significant wavelet coherence for the evaluation of schizophrenic brain activity using a graph theory approach. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS’06, pp. 4265–4268 (2006)

    Google Scholar 

  15. Qi, Y., Siemionow, V., Wanxiang, Y., Sahgal, V., Yue, G.H.: Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. Neural Syst. Rehab. Eng. IEEE Trans. 18, 97–106 (2010)

    Article  Google Scholar 

  16. Weeks, M.: Digital Signal Processing using Matlab and Wavelets, 2nd edn. Jones & Bartlett Learning (2010)

    Google Scholar 

  17. Tolic, M., Jovic, F.: Classification of wavelet transformed eeg signals with neural network for imagined mental and motor tasks. Kinesiology 45, 130–138 (2013). http://hrcak.srce.hr/104591. Accessed 5 Nov 2017

  18. Nicolas-Alonso, L., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  19. Djemal, R., AlSharabi, K., Ibrahim, S., Alsuwailem, A.: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN. BioMed. Res. Int. (2017)

    Google Scholar 

  20. Freitas, D.R.R.: Plataforma de Análise do Sinal de EEG Aplicado ao ERD/ERS no Reconhecimento em Tempo Real da Imaginação do Movimento (2017)

    Google Scholar 

  21. IEEE Standard Verilog Hardware Description Language, IEEE Std 1364-2001

    Google Scholar 

  22. BNCI Horizon 2020. http://bnci-horizon-2020.eu/. Accessed 14 Feb 2018

  23. Qin, X.B., Zhang, Y.Z., Huang, M.T., Wang, M.: EEG signal recognition based on wavelet transform and neural network. In: 2016 International Symposium on Computer, Consumer and Control (IS3C), pp. 523–526. Xi’an (2016)

    Google Scholar 

  24. Li, N., Nie, Y., Zhu, W.: The application of FPGA-based discrete wavelet transform system in EEG analysis. In: 2012 Second International Conference on Intelligent System Design and Engineering Application, pp. 1306–1309. Sanya, Hainan (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo R. R. Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freitas, D.R.R., Inocêncio, A.V.M., Lins, L.T., Alves, G.J., Benedetti, M.A. (2019). A Parallel Implementation of the Discrete Wavelet Transform Applied to Real-Time EEG Signal Filtering. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/2. Springer, Singapore. https://doi.org/10.1007/978-981-13-2517-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2517-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2516-8

  • Online ISBN: 978-981-13-2517-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics