Skip to main content

Characterization of Auditory Evoked Potential for Different Tones in Marmoset Primary Auditory Cortex

  • Conference paper
  • First Online:
XXVI Brazilian Congress on Biomedical Engineering

Part of the book series: IFMBE Proceedings ((IFMBE,volume 70/2))

  • 1226 Accesses

Abstract

Marmosets are highly vocal, social primates, which place them in a leading position for studies comprising the auditory system. Single-neuron recordings have previously described a tonotopic organization in marmoset A1. However, it is still unknown how the processing of auditory stimuli of different frequencies is reflected in the Local Field Potential (LFP) of marmoset’s A1. In this work, we address this issue by assessing sound frequency tuning in marmoset A1 using auditory evoked potentials (AEP) extracted from LFPs. We found that the amplitude and latency of AEPs for different frequencies reflect previously reported behavioral audiograms. Our results reinforce the AEP as an electrophysiological signature of both cortical auditory processing and animal behavioral outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter, P., Funkenstein, H.H.: The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Exp. Brain Res. 18(5), 489–504 (1973)

    Article  Google Scholar 

  2. Näätänen, R.: Processing negativity: an evoked-potential reflection. Psychol. Bull. 92(3), 605 (1982)

    Article  Google Scholar 

  3. Shaw, N.: The auditory evoked potential in the rat—a review. Prog. Neurobiol. 31(1), 19–45 (1988)

    Article  Google Scholar 

  4. Ohl, F.W., Scheich, H., Freeman, W.J.: Topographic analysis of epidural pure-tone–evoked potentials in gerbil auditory cortex. J. Neurophysiol. 83(5), 3123–3132 (2000)

    Article  Google Scholar 

  5. Recanzone, G.H., Guard, D.C., Phan, M.L.: Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J. Neurophysiol. 83(4), 2315–2331 (2000)

    Article  Google Scholar 

  6. Pienkowski, M., Eggermont, J.J.: Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hear. Res. 257(1–2), 24–40 (2009)

    Article  Google Scholar 

  7. Ray, S., Maunsell, J.H.: Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9(4), e1000610 (2011)

    Article  Google Scholar 

  8. Fukushima, M., Saunders, R.C., Leopold, D, Mishkin, M., Averbeck, B.B.: Differential coding of conspecific vocalizations in the ventral auditory cortical stream. J. Neurosci. 34(13), 4665–4676 (2014)

    Google Scholar 

  9. Leon, M.I., Miasnikov, A.A., Wright III, E.J., Weinberger, N.M.: CS-specific modifications of auditory evoked potentials in the behaviorally conditioned rat. Brain Res. 1670, 235–247 (2017)

    Article  Google Scholar 

  10. Rauschecker, J.P.: Cortical processing of complex sounds. Curr. Opin. Neurobiol. 516–521 (1998)

    Google Scholar 

  11. Ohl, F.W., Scheich, H.: Learning-induced plasticity in animal and human auditory cortex. Curr. Opin. Neurobiol. 15(4), 470–477 (2005)

    Article  Google Scholar 

  12. Fritz, J.B., Elhilali, M., Shamma, S.A.: Differential dynamic plasticity of a1 receptive fields during multiple spectral tasks. J. Neurosci. 25(33), 7623–7635 (2005)

    Article  Google Scholar 

  13. Wang, X.: Neural coding strategies in auditory cortex. Hear. Res. 229(1–2), 81–93 (2007)

    Article  Google Scholar 

  14. Wang, X., Walker, K.M.M.: Neural mechanisms for the abstraction and use of pitch information in auditory cortex (2012)

    Google Scholar 

  15. DeLaMothe, L.A., Blumell, S., Kajikawa, Y., Hackett, T.A.: Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat. Rec. 295(5), 822–836 (2012)

    Article  Google Scholar 

  16. Kajikawa, Y., Camalier, C.R., de la Mothe, L.A., D’Angelo, W.R., Sterbing-D’Angelo, S.J., Hackett, T.A.: Auditory cortical tuning to band-pass noise in primate A1 and CM: a comparison to pure tones. Neurosci. Res. 70(4), 401–407 (2011)

    Article  Google Scholar 

  17. Froemke, R.C., Carcea, I., Barker, A.J., Yuan, K., Seybold, B.A., Martins, A.R.O., Zaika, N., Bernstein, H., Wachs, M., Levis, P.A., et al.: Long-term modification of cortical synapses improves sensory perception. Nat. Neurosci. 16(1), 79 (2013)

    Article  Google Scholar 

  18. Yin, P., Fritz, J.B., Shamma, S.A.: Rapid spectrotemporal plasticity in primary auditory cortex during behavior. J. Neurosci. 34(12), 4396–4408 (2014)

    Article  Google Scholar 

  19. Downer, J.D., Niwa, M., Sutter, M.L.: Task engagement selectively modulates neural correlations in primary auditory cortex. J. Neurosci. 35(19), 7565–7574 (2015)

    Article  Google Scholar 

  20. Hose, B., Langner, G., Scheich, H.: Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm? Brain Res. 422(2), 367–373 (1987)

    Article  Google Scholar 

  21. Köppl, C., Manley, G.A., Konishi, M.: Auditory processing in birds. Curr. Opin. Neurobiol. 10(4), 474–481 (2000)

    Article  Google Scholar 

  22. Woolley, S.M., Gill, P.R., Theunissen, F.E.: Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. J. Neurosci. 26(9), 2499–2512 (2006)

    Article  Google Scholar 

  23. Theunissen, F.E., Shaevitz, S.S.: Auditory processing of vocal sounds in birds. Curr. Opin. Neurobiol. 16(4), 400–407 (2006)

    Article  Google Scholar 

  24. Winer, J.A., Chernock, M.L., Larue, D.T., Cheung, S.W.: Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hear. Res. 168(1–2), 181–195 (2002)

    Article  Google Scholar 

  25. Ping, J., Li, N., Galbraith, G.C., Wu, X., Li, L.: Auditory frequency-following responses in rat ipsilateral inferior colliculus. NeuroReport 19(14), 1377–1380 (2008)

    Article  Google Scholar 

  26. De Cheveigné, A., Edeline, J.M., Gaucher, Q., Gourévitch, B.: Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex. J. Neurophysiol. 109(1), 261–272 (2012)

    Article  Google Scholar 

  27. Serafin, J.V., Moody, D.B., Stebbins, W.C.: Frequency selectivity of the monkey’s auditory system: psychophysical tuning curves. J. Acoust. Soc. Am. 71(6), 1513–1518 (1982)

    Article  Google Scholar 

  28. Aitkin, L.M., Merzenich, M.M., Irvine, D.R.F., Clarey, J.C., Nelson, J.E.: Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J. Comp. Neurol. 185 (1986)

    Google Scholar 

  29. O’Connell, M.N., Barczak, A., Schroeder, C.E., Lakatos, P.: Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex. J. Neurosci. 34(49), 16496–16508 (2014)

    Article  Google Scholar 

  30. Noreña, A., Eggermont, J.J.: Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hear. Res. 166(1–2), 202–213 (2002)

    Article  Google Scholar 

  31. Galván, V.V., Weinberger, N.M.: Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol. Learn. Mem. 77(1), 78–108 (2002)

    Article  Google Scholar 

  32. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    Article  Google Scholar 

  33. Buzsáki, G., Anastassiou, C., Koch, C.: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Google Scholar 

  34. Näätänen, R., Picton, T.: The n1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4), 375–425 (1987)

    Article  Google Scholar 

  35. Sharma, A., Kraus, N., McGee, T.J., Nicol, T.G.: Developmental changes in p1 and n1 central auditory responses elicited by consonant-vowel syllables. Clin. Neurophysiol. 104(6), 540–545 (1997)

    Google Scholar 

  36. May, P.J., Tiitinen, H.: Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1), 66–122 (2010)

    Article  Google Scholar 

  37. Szymanski, F.D., Rabinowitz, N.C., Magri, C., Panzeri, S., Schnupp, J.W.: The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex. J. Neurosci. 31(44), 15787–15801 (2011)

    Article  Google Scholar 

  38. Chen, B., Buchwald, J.: Midlatency auditory evoked responses: differential effects of sleep in the cat. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 65(5), 373–382 (1986)

    Article  Google Scholar 

  39. Barth, D.S., Di, S.: Three-dimensional analysis of auditory-evoked potentials in rat neocortex. J. Neurophysiol. 64(5), 1527–1536 (1990)

    Article  Google Scholar 

  40. Pincze, Z., Lakatos, P., Rajkai, C., Ulbert, I., Karmos, G.: Separation of mismatch negativity and the n1 wave in the auditory cortex of the cat: a topographic study. Clin. Neurophysiol. 112(5), 778–784 (2001)

    Article  Google Scholar 

  41. Takahashi, H., Nakao, M., Kaga, K.: Interfield differences in intensity and frequency representation of evoked potentials in rat auditory cortex. Hear. Res. 210(1–2), 9–23 (2005)

    Article  Google Scholar 

  42. Fishman, Y.I., Micheyl, C., Steinschneider, M.: Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J. Neurophysiol. 107(9), 2366–2382 (2012)

    Article  Google Scholar 

  43. Fishman, Y.I., Steinschneider, M.: Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J. Neurosci. 32(45), 15747–15758 (2012)

    Article  Google Scholar 

  44. Paxinos, G., Watson, C., Petrides, M., Rosa, M., Tokuno, H.: The Marmoset Brain in Stereotaxic Coordinates. Elsevier Academic Press (2012)

    Google Scholar 

  45. Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., Mitra, P.P.: Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192(1), 146–151 (2010)

    Article  Google Scholar 

  46. Osmanski, M.S., Wang, X.: Measurement of absolute auditory thresholds in the common marmoset (callithrix jacchus). Hear. Res. 277(1–2), 127–133 (2011)

    Article  Google Scholar 

  47. Pfurtscheller, G.: Functional brain imaging based on ERD/ERS. Vis. Res. 41(10), 1257–1260 (2001)

    Article  Google Scholar 

  48. Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends Cogn. Sci. 8(5), 204–210 (2004)

    Article  Google Scholar 

  49. Buzsáki, G.: Neural syntax: cell assemblies. Neuron (2) (2010)

    Google Scholar 

  50. Agamaite, J.A., Chang, C.J., Osmanski, M.S., Wang, X.: A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J. Acoust. Soc. Am. 138(5), 2906–2928 (2015)

    Article  Google Scholar 

  51. Herrmann, C.S., Knight, R.T.: Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25(6), 465–476 (2001)

    Article  Google Scholar 

  52. Schyns, P.G., Thut, G., Gross, J.: Cracking the code of oscillatory activity. PLoS Biol. 9(5), e1001064 (2011)

    Google Scholar 

  53. Taliep, M.S., Gibson, A.S.C., Gray, J., van der Merwe, L., Vaughan, C., Noakes, T., Kellaway, L., John, L.: Event-related potentials, reaction time, and response selection of skilled and less-skilled cricket batsmen. Perception 37(1), 96–105 (2008)

    Article  Google Scholar 

  54. Schroeder, C.E., Lakatos, P.: Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32(1), 9–18 (2009)

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support from Santos Dumont Institute (ISD), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Ministry of Education (MEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre S. C. Peres .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araujo, F.A. et al. (2019). Characterization of Auditory Evoked Potential for Different Tones in Marmoset Primary Auditory Cortex. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/2. Springer, Singapore. https://doi.org/10.1007/978-981-13-2517-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2517-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2516-8

  • Online ISBN: 978-981-13-2517-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics