Skip to main content

Symmetries in Exact Bohrification

  • Conference paper
  • First Online:
Reality and Measurement in Algebraic Quantum Theory (NWW 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 261))

  • 613 Accesses

Abstract

The ‘Bohrification” program in the foundations of quantum mechanics implements Bohr’s doctrine of classical concepts through an interplay between commutative and non-commutative operator algebras. Following a brief conceptual and mathematical review of this program, we focus on one half of it, called “exact” Bohrification, where a (typically noncommutative) unital \(C^*\)-algebra A is studied through its commutative unital \(C^*\)-subalgebras \(C\subseteq A\), organized into a poset \(\mathscr {C}(A)\). This poset turns out to be a rich invariant of A (Hamhalter in J Math Anal Appl 383:391–399, 2011, [19], Hamhalter in J Math Anal Appl 422:1103-1115, 2015, [20], Landsman in Bohrification: From classical concepts to commutative algebras. Chicago, Chicago University Press [34]). To set the stage, we first give a general review of symmetries in elementary quantum mechanics (i.e., on Hilbert space) as well as in algebraic quantum theory, incorporating \(\mathscr {C}(A)\) as a new kid in town. We then give a detailed proof of a deep result due to Hamhalter (J Math Anal Appl 383:391–399, 2011, [19]), according to which \(\mathscr {C}(A)\) determines A as a Jordan algebra (at least for a large class of \(C^*\)-algebras). As a corollary, we prove a new Wigner-type theorem to the effect that order isomorphisms of \(\mathscr {C}(B(H))\) are (anti) unitarily implemented. We also show how \(\mathscr {C}(A)\) is related to the orthomodular poset \({\mathscr {P}}(A)\) of projections in A. These results indicate that \(\mathscr {C}(A)\) is a serious player in \(C^*\)-algebras and quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfsen, E.M., Shultz, F.W. (2001). State Spaces of Operator Algebras. Basel: Birkhäuser.

    Book  Google Scholar 

  2. Alfsen, E.M., Shultz, F.W. (2003). Geometry of State Spaces of Operator Algebras. Basel: Birkhäuser.

    Book  Google Scholar 

  3. Berberian, S.K. (1972). Baer *-rings. Springer-Verlag.

    Google Scholar 

  4. Blackadar, B. (1981). A simple unital projectionless \(C^*\)-algebra. Journal of Operator Theory 5, 63–71.

    Google Scholar 

  5. Bohr, N. (1928). The quantum postulate and recent developments of atomic theory (Como lecture). Nature suppl. April 14, 1928, pp. 580–590.

    Article  Google Scholar 

  6. Bratteli, O., Robinson, D.W. (1987). Operator Algebras and Quantum Statistical Mechanics. Vol. I: \(C^*\)- and \(W^*\)-Algebras, Symmetry Groups, Decomposition of States. 2nd Ed. Berlin: Springer.

    Google Scholar 

  7. Bunce, L.J., Wright, J.D.M. (1992). The Mackey-Gleason Problem. Bulletin of the American Mathematical Society Vol. 26, No. 2, 288–293.

    Article  MathSciNet  Google Scholar 

  8. Bunce, L.J., Wright, J.D.M. (1996). The quasi-linearity problem for \(C^*\)-algebras. Pacific Journal of Mathematics Vol. 172, No. 1, 41–47.

    Article  MathSciNet  Google Scholar 

  9. Camilleri, K. (2009). Heisenberg and the Interpretation of Quantum Mechanics: The Physicist as Philosopher. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  10. Cassinelli, G., De Vito, E., Lahti, P.J., Levrero, A. (2004). The Theory of Symmetry Actions in Quantum Mechanics. Lecture Notes in Physics 654. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  11. Döring, A., Harding, J. (2010). Abelian subalgebras and the Jordan structure of a von Neumann algebra. arXiv:1009.4945.

  12. Döring, A., Isham, C.J. (2008a). A topos foundation for theories of physics: I. Formal languages for physics, Journal of Mathematical Physics 49, Issue 5, 053515.

    Article  MathSciNet  Google Scholar 

  13. Döring, A., Isham, C.J. (2008b). A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory, Journal of Mathematical Physics 49, Issue 5, 053516.

    MATH  Google Scholar 

  14. Döring, A., Isham, C.J. (2008c). A topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows \(\breve{\delta }(\hat{A}):\underline{\varSigma }\rightarrow \underline{{\mathbb{R}}}^{\leftrightarrow }\), Journal of Mathematical Physics 49, Issue 5, 053517.

    Google Scholar 

  15. Döring, A., Isham, C.J. (2008d). A topos foundation for theories of physics: IV. Categories of systems, Journal of Mathematical Physics 49, Issue 5, 053518.

    Article  MathSciNet  Google Scholar 

  16. Firby, P.A. (1973). Lattices and compactifications, II. Proceedings of the London Mathematical Society 27, 51–60.

    Article  MathSciNet  Google Scholar 

  17. Gelfand, I.M., Naimark, M.A. (1943). On the imbedding of normed rings into the ring of operators in Hilbert space. Sbornik: Mathematics 12, 197–213.

    MathSciNet  MATH  Google Scholar 

  18. Hamhalter, J. (2004). Quantum Measure Theory. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  19. Hamhalter, J. (2011). Isomorphisms of ordered structures of abelian \(C^*\)-subalgebras of \(C^*\)-algebras, Journal of Mathematical Analysis and Applications 383, 391–399.

    Article  MathSciNet  Google Scholar 

  20. Hamhalter, J. (2015). Dye’s Theorem and Gleason’s Theorem for \(AW^*\)-algebras. Journal of Mathematical Analysis and Applications 422, 1103–1115.

    Article  MathSciNet  Google Scholar 

  21. Hamilton, J., Isham, C.J., Butterfield, J. (2000). Topos perspective on the Kochen–Specker Theorem: III. Von Neumann Algebras as the base category. International Journal of Theoretical Physics 39, 1413–1436.

    Article  MathSciNet  Google Scholar 

  22. Hanche-Olsen, H., Størmer, E. (1984). Jordan Operator Algebras. Boston: Pitman.

    MATH  Google Scholar 

  23. Harding, J. , Navara, M. (2011). Subalgebras of Orthomodular Lattices. Order 28, 549–563.

    Article  MathSciNet  Google Scholar 

  24. Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33, 879–893.

    Article  Google Scholar 

  25. Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198.

    Article  Google Scholar 

  26. Heisenberg, W. (1958). Physics and Philosophy: The Revolution in Modern Science. London: Allen & Unwin.

    Google Scholar 

  27. Held, C. (1994). The Meaning of Complementarity. Studies in History and Philosophy of Science 25, 871–893.

    Article  Google Scholar 

  28. Heunen, C., Lindenhovius, A.J. (2015). Domains of \(C^*\)-subalgebras. Proceedings of the 30th annual ACM/IEEE symposium on Logic in Computer Science pp. 450–461.

    Google Scholar 

  29. Heunen, C., Reyes, M.L. (2014). Active lattices determine \(AW^*\)-algebras. Journal of Mathematical Analysis and Applications 416, 289–313.

    Article  MathSciNet  Google Scholar 

  30. Heunen, C., Landsman, N.P., Spitters, B. (2009). A topos for algebraic quantum theory. Communications in Mathematical Physics 291, 63–110.

    Article  MathSciNet  Google Scholar 

  31. Isham, C.J., Butterfield, J. (1998). Topos perspective on the Kochen–Specker theorem. I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37, 2669–2733.

    Article  MathSciNet  Google Scholar 

  32. Kadison, R.V., Ringrose, J.R. (1983). Fundamentals of the Theory of Operator Algebras. Vol 1: Elementary Theory. New York: Academic Press.

    Google Scholar 

  33. Landsman, N.P. 1998. Mathematical Topics Between Classical and Quantum Mechanics. New York: Springer-Verlag.

    Book  Google Scholar 

  34. Landsman, N.P. (2016). Bohrification: From classical concepts to commutative algebras. To appear in Niels Bohr in the 21st Century, eds. J. Faye, J. Folse. Chicago: Chicago University Press. arXiv:1601.02794.

  35. Landsman, N.P. (2017). Bohrification: From Classical Concepts to Commutative Operator Algebras. In preparation.

    Google Scholar 

  36. Lindenhovius, A.J. (2015). Classifying finite-dimensional \(C^*\)-algebras by posets of their commutative \(C^*\)-subalgebras. arXiv:1501.03030.

  37. Lindenhovius, A.J. (2016). \(\mathscr C\it (A)\). PhD Thesis, Radboud University Nijmegen.

    Google Scholar 

  38. Mendivil, F. (1999). Function algebras and the lattices of compactifications. Proceedings of the American Mathematical Society 127, 1863–1871.

    Article  MathSciNet  Google Scholar 

  39. Moretti, V. (2013). Spectral Theory and Quantum Mechanics. Mailand: Springer-Verlag.

    Book  Google Scholar 

  40. Shultz, F.W. (1982). Pure states as dual objects for \(C^*\)-algebras. Communications in Mathematical Physics 82, 497–509.

    Article  MathSciNet  Google Scholar 

  41. Simon, B. (1976). Quantum dynamics: from automorphism to Hamiltonian. Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, pp. 327–349. Lieb, E., Simon, B., Wightman, A.S., eds. Princeton: Princeton University Press.

    Google Scholar 

  42. Willard, S. (1970). General Topology. Reading: Addison-Wesley Publishing Company.

    Google Scholar 

Download references

Acknowledgements

The first author has been supported by Radboud University and Trinity College (Cambridge). The second author was supported by the Netherlands Organisation for Scientific Research (NWO) under TOP-GO grant no. 613.001.013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas Landsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landsman, K., Lindenhovius, B. (2018). Symmetries in Exact Bohrification. In: Ozawa, M., Butterfield, J., Halvorson, H., Rédei, M., Kitajima, Y., Buscemi, F. (eds) Reality and Measurement in Algebraic Quantum Theory. NWW 2015. Springer Proceedings in Mathematics & Statistics, vol 261. Springer, Singapore. https://doi.org/10.1007/978-981-13-2487-1_4

Download citation

Publish with us

Policies and ethics