Skip to main content

Cumulative Energy Demand of Hydrogen Energy Systems

  • Chapter
  • First Online:
Energy Footprints of the Energy Sector

Abstract

Hydrogen energy systems are expected to play a significant role in achieving a sustainable energy sector. This requires that sustainable hydrogen options are actually available and implemented. In order to check the suitability of hydrogen under sustainability aspects, the life cycle assessment methodology is often used. In particular, global warming (i.e., carbon footprint) and cumulative energy demand (CED or energy footprint) are among the most common life-cycle indicators evaluated for hydrogen energy systems. This chapter provides a complete library of consistent (i.e., harmonised) CED values for a high number of hydrogen production options belonging to different technological categories (thermochemical, electrochemical, and biological). Overall, 71 case studies of renewable hydrogen are benchmarked—in terms of CED—against the reference case of conventional (fossil-based) hydrogen from steam reforming of natural gas. Furthermore, a correlation equation between CED and carbon footprint is calculated and applied for the estimation of harmonised CED values. The use of harmonised values allows sound comparisons by mitigating the risk of misinterpretation. The results show that electrochemical hydrogen generally performs better than thermochemical hydrogen, while biological systems show a high dispersion of values. Especially, the use of wind power as the driving energy for electrochemical hydrogen production tends to be associated with a favourable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Authayanun, S., Suwanmanee, U., & Arpornwichanop, A. (2015). Enhancement of dilute bio-ethanol steam reforming for a proton exchange membrane fuel cell system by using methane as co-reactant: Performance and life cycle assessment. International Journal of Hydrogen Energy, 40, 12144–12153.

    Article  Google Scholar 

  • Biswas, W. K., Thompson, B. C., & Islam, M. N. (2013). Environmental life cycle feasibility assessment of hydrogen as an automotive fuel in Western Australia. International Journal of Hydrogen Energy, 38, 246–254.

    Article  Google Scholar 

  • Cetinkaya, E., Dincer, I., & Naterer, G. F. (2012). Life cycle assessment of various hydrogen production methods. International Journal of Hydrogen Energy, 37, 2071–2080.

    Article  Google Scholar 

  • Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954–1971.

    Article  Google Scholar 

  • Djomo, S. N., & Blumberga, D. (2011). Comparative life cycle assessment of three biohydrogen pathways. Bioresource technology, 102, 2684–2694.

    Article  Google Scholar 

  • Dufour, J., Serrano, D. P., Gálvez, J. L., González, A., Soria, E., & Fierro, J. L. G. (2012). Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. International Journal of Hydrogen Energy, 37, 1173–1183.

    Article  Google Scholar 

  • Dufour, J., Iribarren, D., Zapp, P., Ishimoto, Y., Espegren. K. A., & Masoni, P. (2015). Towards a harmonised life cycle sustainability assessment framework for hydrogen energy systems: IEA HIA Task 36. In Organising Committee HYPOTHESIS XI, editors. Hydrogen Power Theoretical and Engineering Solutions International Symposium 2015 —Book of Abstracts (p. 131). Móstoles: Rey Juan Carlos University.

    Google Scholar 

  • Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Life cycle assessment of hydrogen fuel cell and gasoline vehicles. International Journal of Hydrogen Energy, 31, 337–352.

    Article  Google Scholar 

  • Granovskii, M., Dincer, I., & Rosen, M. A. (2007). Exergetic life cycle assessment of hydrogen production from renewables. Journal of Power Sources, 167, 461–471.

    Article  Google Scholar 

  • Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., et al. (2001). Life cycle assessment—An operational guide to the ISO standards. Leiden: Centre of Environmental Science.

    Google Scholar 

  • Hajjaji, N., Pons, M. N., Renaudin, V., & Houas, A. (2013). Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock. Journal of Cleaner Production, 44, 177–189.

    Article  Google Scholar 

  • Hajjaji, N., Martinez, S., Trably, E., Steyer, J. P., & Helias, A. (2016). Life cycle assessment of hydrogen production from biogas reforming. International Journal of Hydrogen Energy, 41, 6064–6075.

    Article  Google Scholar 

  • Heracleous, E. (2011). Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines. International Journal of Hydrogen Energy, 36, 11501–11511.

    Article  Google Scholar 

  • Huijbregts, M. A. J., Rombouts, L. J. A., Hellweg, S., Frischknecht, R., Hendriks, A. J., van de Meent, D., et al. (2006). Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environmental Science and Technology, 40, 641–648.

    Article  Google Scholar 

  • International Organization for Standardization. (2006a). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. Geneva: ISO.

    Google Scholar 

  • International Organization for Standardization. (2006b). ISO 14044:2006 Environmental management—Life cycle assessment—Requirements and guidelines. Geneva: ISO.

    Google Scholar 

  • Iribarren, D., Susmozas, A., Petrakopoulou, F., & Dufour, J. (2014). Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production, 69, 165–175.

    Article  Google Scholar 

  • Khan, F. I., Hawboldt, K., & Iqbal, M. T. (2005). Life Cycle Analysis of wind–fuel cell integrated system. Renew. Energy, 30, 157–177.

    Article  Google Scholar 

  • Koj, J. C., Schreiber, A., Zapp, P., & Marcuello, P. (2015). Life cycle assessment of improved high pressure alkaline electrolysis. Energy Procedia, 75, 2871–2877.

    Article  Google Scholar 

  • Koroneos, C., Dompros, A., Roumbas, G., & Moussiopoulos, N. (2004). Life cycle assessment of hydrogen fuel production processes. International Journal of Hydrogen Energy, 29, 1443–1450.

    Article  Google Scholar 

  • Koroneos, C., Dompros, A., & Roumbas, G. (2008). Hydrogen production via biomass gasification–A life cycle assessment approach. Chemical Engineering and Processing, 47, 1261–1268.

    Article  Google Scholar 

  • Lee, J. Y., An, S., Cha, K., & Hur, T. (2010). Life cycle environmental and economic analyses of a hydrogen station with wind energy. International Journal of Hydrogen Energy, 35, 2213–2225.

    Article  Google Scholar 

  • Lombardi, L., Carnevale, E., & Corti, A. (2011). Life cycle assessment of different hypotheses of hydrogen production for vehicle fuel cells fuelling. International of Journal Energy Environment Engineering, 2, 63–78.

    Google Scholar 

  • Lozanovski, A., Schuller, O., & Faltenbacher, M. (2011). Guidance document for performing LCA on hydrogen production systems. Brussels: FCH JU.

    Google Scholar 

  • Manish, S., & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33, 279–286.

    Article  Google Scholar 

  • Marquevich, M., Sonnemann, G. W., Castells, F., & Montané, D. (2002). Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chemistry, 4, 414–423.

    Article  Google Scholar 

  • Martín-Gamboa, M., Iribarren, D., Susmozas, A., & Dufour, J. (2016). Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis. Bioresource Technology, 214, 376–385.

    Article  Google Scholar 

  • Miotti, M., Hofer, J., & Bauer, C. (2017). Integrated environmental and economic assessment of current and future fuel cell vehicles. International Journal of Life Cycle Assessment, 22, 94–110.

    Article  Google Scholar 

  • Mori, M., Jensterle, M., Mržljak, T., & Drobnič, B. (2014). Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy. International Journal of Life Cycle Assessment, 19, 1810–1822.

    Article  Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., et al. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, & J. Boschung (Eds.), Climate Change 2013: The Physical Science Basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pacheco, R., Ferreira, A. F., Pinto, T., Nobre, B. P., Loureiro, D., Moura, P., et al. (2015). The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Conversion and Management, 89, 789–797.

    Article  Google Scholar 

  • Patyk, A., Bachmann, T. M., & Brisse, A. (2013). Life cycle assessment of H2 generation with high temperature electrolysis. International Journal of Hydrogen Energy, 38, 3865–3880.

    Article  Google Scholar 

  • Ramos Pereira, S., & Coelho, M. C. (2013). Life cycle analysis of hydrogen—A well-to-wheels analysis for Portugal. International Journal of Hydrogen Energy, 38, 2029–2038.

    Article  Google Scholar 

  • Reiter, G., & Lindorfer, J. (2015). Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. International Journal of Life Cycle Assessment, 20, 477–489.

    Article  Google Scholar 

  • Simons, A., & Bauer, C. (2011). Life cycle assessment of hydrogen production. In A. Wokaun & E. Wilhelm (Eds.), Transition to Hydrogen—Pathways toward Clean Transportation (pp. 13–57). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Spath, P. L., & Mann, M. K. (2004). Life cycle assessment of renewable hydrogen production via wind/electrolysis. Golden: US National Renewable Energy Laboratory.

    Google Scholar 

  • Suleman, F., Dincer, I., & Agelin-Chaab, M. (2015). Environmental impact assessment and comparison of some hydrogen production options. International Journal of Hydrogen Energy, 40, 6976–6987.

    Article  Google Scholar 

  • Susmozas, A., Iribarren, D., & Dufour, J. (2013). Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 38, 9961–9972.

    Article  Google Scholar 

  • Susmozas, A., Iribarren, D., & Dufour, J. (2015). Assessing the life-cycle performance of hydrogen production via biofuel reforming in Europe. Resources, 4, 398–411.

    Article  Google Scholar 

  • Susmozas, A., Iribarren, D., Zapp, P., Linβen, J., & Dufour, J. (2016). Life-cycle performance of hydrogen production via indirect biomass gasification with CO2 capture. International Journal of Hydrogen Energy, 41, 19484–19491.

    Article  Google Scholar 

  • Valente, A., Iribarren, D., Dufour, J., & Spazzafumo, G. (2015). Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 40, 16660–16672.

    Article  Google Scholar 

  • Valente, A., Iribarren, D., & Dufour, J. (2017a). Life cycle assessment of hydrogen energy systems: a review of methodological choices. International Journal of Life Cycle Assessment, 22, 346–363.

    Article  Google Scholar 

  • Valente, A., Iribarren, D., & Dufour, J. (2017b). Harmonised life-cycle global warming impact of renewable hydrogen. Journal of Cleaner Production, 149, 762–772.

    Article  Google Scholar 

  • Valente, A., Iribarren, D., & Dufour, J. (2018a). Harmonising the cumulative energy demand of renewable hydrogen for robust comparative life-cycle studies. Journal of Cleaner Production, 175, 384–393.

    Article  Google Scholar 

  • Valente, A., Iribarren, D., & Dufour, J. (2018b). Harmonising methodological choices in life cycle assessment of hydrogen: a focus on acidification and renewable hydrogen. International Journal of Hydrogen Energy (in press). https://doi.org/10.1016/j.ijhydene.2018.03.101.

  • VDI. (2012). VDI guideline 4600: Cumulative energy demand (KEA)—Terms, definitions, methods of calculation. Düsseldorf: Verein Deutscher Ingenieure.

    Google Scholar 

  • Weinberg, J., & Kaltschmitt, M. (2013). Life cycle assessment of mobility options using wood based fuels—comparison of selected environmental effects and costs. Bioresource Technology, 150, 420–428.

    Article  Google Scholar 

  • Wulf, C., & Kaltschmitt, M. (2012). Life cycle assessment of hydrogen supply chain with special attention on hydrogen refuelling stations. International Journal of Hydrogen Energy, 37, 16711–16721.

    Article  Google Scholar 

  • Wulf, C., & Kaltschmitt, M. (2013). Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresource Technology, 150, 466–475.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partly supported by the Spanish Ministry of Economy, Industry and Competitiveness (ENE2015-74607-JIN AEI/FEDER/UE) and the Regional Government of Madrid (S2013/MAE-2882 and S2013/ABI-2783). This work is framed within Task 36 of the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Iribarren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valente, A., Iribarren, D., Dufour, J. (2019). Cumulative Energy Demand of Hydrogen Energy Systems. In: Muthu, S. (eds) Energy Footprints of the Energy Sector. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2457-4_2

Download citation

Publish with us

Policies and ethics