Skip to main content

Environmental Footprints of Water—Concepts, Tools, Importance and Challenges

  • Chapter
  • First Online:
Environmental Water Footprints

Abstract

The worldwide demand for clean water makes water a vital importance in supply and efficiency in usage for the sustainable future. Rapid industrialization and economy, increases water demand mainly in the field of agriculture and industrial sector. There is vulnerability for the available quality of water due to the climate variability and raising demand. In order to predict the demand of water, footprint assessment techniques and tools are introduced in monitoring greenhouse gases and water flow across the world in last decades. This chapter provides a detail sketch of green, blue, grey water, virtual water and its global trends. The detailed review of water management in energy sectors such as, integration of waste water with water management planning, improvement in cooling systems, development and integration of decision-support tool with weather models and climate, their importance as well as future challenges are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreea, E. S., & Teodosiu, C. (2011). Grey water footprint assessment and challenges for its implementation. Environmental Engineering and Management, 10(3), 333–340.

    Article  Google Scholar 

  • Bhat, T. A. (2014). An analysis of demand and supply of water in India. Journal of Environmental and Earth Science, 4(11), 2224–3216.

    Google Scholar 

  • Brauman, K. A., Siebert, S., & Foley, J. A. (2013). Improvements in crop water productivity increase water sustainability and food security: A global analysis. Environmental Research Letters, 8(2), 024–030(7).

    Google Scholar 

  • Europe, Coca-Cola. (2011). Water footprint sustainability assessment: Towards sustainable sugar sourcing in Europe. Brussels: Belgium.

    Google Scholar 

  • Dong, H. J., Geng, Y., Sarkis, J., Fujita, T., Okadera, T., & Xue, B. (2013). Regional water footprint evaluation in China: A case of Liaoning. Science of the Total Environment, 442, 215–224.

    Article  CAS  Google Scholar 

  • Ercin, A. E., & Hoekstra, A. Y. (2012). Carbon and water footprints: Concepts, methodologies and policy responses. United Nations World Water Assessment Programme, UNESCO; 2012. ISBN: 978-92-3-001095-9.

    Google Scholar 

  • Freitas, A., Zhang, G., & Mathews, R. (2017). Water footprint assessment of polyster and viscose, C&A Foundation (2017).

    Google Scholar 

  • Garcia, B. (2015). Reduced water washing of denim garments. In Denim: Manufacture, finishing and applications (pp. 405–423). Woodhead Publications.

    Google Scholar 

  • Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2011). A comparative study on the water footprint of poultry, pork and beef in different countries and production systems. Value of Water Research Report Series No. 55. UNESCO-IHE, Delft, The Netherlands.

    Google Scholar 

  • Glaister, B. J., & Mudd, G. M. (2010). The environmental costs of platinum-PGM mining and sustainability: Is the glass half-full or half-empty? Minerals Engineering, 23, 438–450.

    Article  CAS  Google Scholar 

  • Hoekstra, A. Y., & Hung, P. Q. (2002). Virtual water trade. A quantification of virtual waterflows between nations in relation to international trade. International Expert Meeting on Virtual Water Trade (Vol. 12, No. 11, pp. 1–244).

    Google Scholar 

  • Hoekstra, A. Y. (2017). Water footprint assessment in supply chains. In: Y. Bouchery, C. Corbett, J. Fransoo, & T. Tan (Eds.), Sustainable supply chains. Springer Series in Supply Chain Management (Vol. 4, pp. 65–85). Cham: Springer.

    Google Scholar 

  • Hoekstra, A. Y. (2008). The water footprint of food. The Netherlands: Twente Water Centre, University of Twente.

    Google Scholar 

  • Hoekstra, A. Y. (2015). The water footprint of industry. In J. J. Klemes (Ed.), Assessing and measuring environmental impact and sustainability (pp. 221–254). USA: Waltham.

    Chapter  Google Scholar 

  • Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564–573.

    Article  Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011a). The water footprint assessment manual. London-Washington, DC: Earthscan.

    Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011b). The water footprint assessment manual. Retrieved February, 2011, from http://doi.org/978-1-84971-279-8.

  • IEA (International Energy Agency). (2011). The IEA Model of Short-Term Energy Security (MOSES) Primary Energy Sources and Secondary Fuels Working Paper. Paris: OECD/IEA.

    Google Scholar 

  • International organization for Standardization (ISO). (2014). https://www.iso.org/standard/43263.html.

  • Jefferies, D., Munoz, I., Hodges, J., King, V. J., Aldaya, M., Ercin, A. E., et al. (2012). Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption: Key learning points from pilot studies on tea and margarine. Journal of Cleaner Production, 33, 155–166.

    Article  Google Scholar 

  • Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251.

    Article  CAS  Google Scholar 

  • Luiken, A., & Bouwhuis, G. (2015). Recovery and recycling of denim waste. In Denim: Manufacture, finishing and applications (pp. 527–540). Woodhead Publications.

    Google Scholar 

  • Martínez-Paz, J. M., Pellicer-Martínez, F., & Colino, J. (2014). A probabilistic approach for the socioeconomic assessment of urban river rehabilitation projects. Land Use Policy, 36, 468–477.

    Article  Google Scholar 

  • McKinsey. (2009). Charting our water future: economic frameworks to inform decision-making. Munich: 2030 Water Resource Group, McKinsey Company.

    Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2010). The green, blue and grey water footprint of farm animals and animal products. Value of Water Research Report Series No. 48. Delft, The Netherlands: UNESCO-IHE.

    Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415.

    Article  CAS  Google Scholar 

  • Mudd, G. M. (2010). The environmental sustainability of mining in Australia: Key production trends and their environmental implications for the future. Research report No. RR5, Department of Civil Engineering, Monash University and Mineral Policy Institute (Revised April 2009).

    Google Scholar 

  • Napier-Munn, T. J., & Morrison, R. D. (2003). The potential for the dry processing of ores. In Proceedings of Water in Mining 2003 (pp. 247–250), Brisbane, QLD, 13–15 Oct.

    Google Scholar 

  • Northey, S., Haque, N., & Mudd, G. (2013). Using sustainability reporting to assess the environmental footprint of copper mining. Journal of Cleaner Production, 40, 118–128.

    Article  Google Scholar 

  • Oel, P. R. V., & Hoekstra, A. R. (2010). The green and blue water footprint of paper products: Methodological considerations and quantification. Value of Water Research Report Series No. 46. Enschede, The Netherlands: ITC, University of Twente.

    Google Scholar 

  • Olivares, M., Toledo, M., Acuna, A., & Garces, M. (2012). Preliminary estimate of the water footprint of copper concentrate production in central Chile. In Proceedings of the Third International Congress on Water Management in the Mining Industry, Santiago, Chile, 6–8 June 2012, Gecamin (pp. 390–400).

    Google Scholar 

  • Pellicer-Martínez, F., & Martínez-Paz, J. M. (2016). Grey Water footprint assessment at the river basin level: Accounting method and case study in the Segura River Basin, Spain. Ecological Indicators, 60, 1173–1183.

    Article  CAS  Google Scholar 

  • Pena, C. A., & Huijbregts, M. A. J. (2014). The blue water footprint of primary copper production in Northern Chile. Journal of Industrial Ecology, 18(1), 49–58.

    Article  CAS  Google Scholar 

  • Pophare, A. M., Lamsoge, B. R., Katpatal, Y. B., & Nawale, V. P. (2014). Impact of over-exploitation on subwater quality: A case study from WR-2 Watershed, India. Journal of Earth System Science, 123, 1541–1566.

    Article  Google Scholar 

  • Ranchod, N., Sheridan, C. M., Pint, N., Slatter, K., & Harding, K. G. (2015). Assessing the blue-water footprint of an opencast platinum mine in South Africa. Water SA, 41(2), 287–293.

    Article  Google Scholar 

  • Rep, J. (2011). From forest to paper, the story of our water footprint, A case study for the UPM Nardland Papier mill, Kymmene, 2011.

    Google Scholar 

  • Ridoutt, B. G., Eady, S. J., Sellahewa, J., Simons, L., & Bektash, R. (2009). Water footprinting at the product brand level: Case study and future challenges. Journal of Cleaner Production, 17, 1228–1235.

    Article  Google Scholar 

  • Rodriques, D. B., Gupta, H. V., & Mendiondo, E. M. (2014). A blue/green water based accounting framework for assessment of water security. Water Resources Research, 50, 7187–7205.

    Article  Google Scholar 

  • Morera, S., Corominas, L., Poch, M., Alday, M. M., & Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production, 112(20), 4741–4748.

    Article  CAS  Google Scholar 

  • Sandoval-Solis, S., McKinney, D., & Loucks, D. (2011). Sustainability index for water resources planning and management. Journal of Water Resources Planning and Management, 137, 381–390.

    Article  Google Scholar 

  • Schneider, C. (2013). Three shades of water increasing water security with blue. Green, and Gray Water. http://dx.doi.org/10.2134/csa2013-58-10-1.

  • Sikirica, N. (2011). Water footprint assessment bananas and pineapples. Driebergen, The Netherlands: Dole Food Company, Soil & More International.

    Google Scholar 

  • Singh, O. P., & Kumar, M. D. (2004, July). Impact of dairy farming on agricultural water productivity and irrigation water user. http://publications.iwmi.org/pdf/H042638.pdf.

  • Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Global Environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239.

    Article  Google Scholar 

  • Strauss, L., & Co. Water (online). (2016). http://levistrauss.com/sustainability/planet/.

  • Thaler, S., Zessner, M., Bertran De Lis, F., Kreuzinger, N., & Fehringer, R. (2012). Considerations on methodological challenges for water footprint calculations. Water Science and Technology, 65(7), 1258–1264.

    Article  CAS  Google Scholar 

  • United Nations. (2010). United Nations Resolution 64/292 The Human Right to Water and Sanitation. www.un.org.

  • Vanham, D. (2013). The water footprint of Austria for different diets. Water Science and Technology, 67(4), 824–830.

    Google Scholar 

  • Vanham, D., & Bidoglio, G. (2013). A review on the indicator water footprint for the EU28. Ecological Indicators, 26(2013), 61–75.

    Article  Google Scholar 

  • Vorosmarty, C. J., Mclntyre, P., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  CAS  Google Scholar 

  • Wang, L., Ding, X., & Wu, X. (2013). Blue and grey water footprint of textile industry in China. Water Science and Technology, 68(11), 2485–2491.

    Article  CAS  Google Scholar 

  • Water Footprint (online). (2016). http://waterfootprint.org.

  • Water Footprint and Its Growing Importance (online). (2017). https://www.thebalance.com/water-footprint-and-its-growing-importance-2878071.

  • Water Footprint Concept (online). (2015, Updated 2018). https://www.gktoday.in/academy/article/water-footprint-concept-of-blue-water-greenwater-grey-water.

  • WWAP, U. (2012). The United Nations World Water Development 42 Report 4: Managing Water under Uncertainty and Risk.

    Google Scholar 

  • WWDR. (2015). The United Nations World Water Development Report 2015, Published by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senthil Kumar, P., Grace Pavithra, K. (2019). Environmental Footprints of Water—Concepts, Tools, Importance and Challenges. In: Muthu, S. (eds) Environmental Water Footprints. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2454-3_1

Download citation

Publish with us

Policies and ethics