Skip to main content
  • 379 Accesses

Abstract

The windshield plays an important role in accidents. When a pedestrian is hit by a car, impact usually occurs on the windshield, which accounts for approximately 50% of pedestrian deaths during accidents (Xu and Li in Int J Crashworthiness 14:63–71, 2009) [1], typically due to head impact with the windshield (Otte in Proceedingd of the 1999 international IRCOBI conference on the biomechanics of impact, 1999) [2]. Notably, pedestrians comprise the largest group of motor vehicle deaths and account for approximately 24.78% of total traffic accident fatalities (2010). The percentage is even higher in Korea, i.e., approximately 40% of all traffic-related fatalities in 2004 (Oh et al. in Int J Autom Technol 9:191–196, 2008) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Xu, Y. Li, Crack analysis in PVB laminated windshield impacted by pedestrian head in traffic accident. Int. J. Crashworthiness 14, 63–71 (2009)

    Article  Google Scholar 

  2. D. Otte, Severity and mechanism of head impacts in car to pedestrian accidents, in Proceedings of the 1999 International IRCOBI Conference on the Biomechanics of Impact, 23–24 Sept 1999, Sitges, Spain, 1999

    Google Scholar 

  3. C. Oh, Y.S. Kang, Y. Youn, A. Konosu, Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions. Int. J. Automot. Technol. 9, 191–196 (2008)

    Article  Google Scholar 

  4. J. Xu, Y.B. Li, Study of damage in windshield glazing subject to impact by a pedestrian’s head. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 223, 77–84 (2009)

    Article  Google Scholar 

  5. J. Xu, Y. Li, G. Lu, W. Zhou, Reconstruction model of vehicle impact speed in pedestrian–vehicle accident. Int. J. Impact Eng. 36, 783–788 (2009)

    Article  Google Scholar 

  6. S. Shahbeyk, A. Abvabi, A numerical study on the effect of accident configuration on pedestrian lower extremity injuries. Sci. Iranica 16, 376–387 (2009)

    Google Scholar 

  7. M.K. Shin, S.I. Yi, O.T. Kwon, G.J. Park, Structural optimization of the automobile frontal structure for pedestrian protection and the low-speed impact test. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 222, 2373–2387 (2008)

    Article  Google Scholar 

  8. J.W. Lee, M.K. Shin, K.H. Yoon, G.J. Park, An orthogonal-array-based design-of-experiments method for designing a vehicle hood and bumper structure. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 222, 161–171 (2008)

    Article  Google Scholar 

  9. B. Liu, T. Xu, X. Xu, Y. Wang, Y. Sun, Y. Li, Energy absorption mechanism of polyvinyl butyral laminated windshield subjected to head impact: experiment and numerical simulations. Int. J. Impact Eng. 90, 26–36 (2016)

    Article  Google Scholar 

  10. N. Yang, J. Wang, G. Zhao, Y. Zhong, D. Wang, Experimental study of headform–PVB laminated windshield impact. Int. J. Crashworthiness 1–11 (2016)

    Google Scholar 

  11. E. NCAP, European New Car Assessment Programme, Pedestrian Testing Protocol (2014)

    Google Scholar 

  12. B. Liu, T. Xu, X. Xu, Y. Wang, Y. Sun, Y. Li, Energy absorption mechanism of polyvinyl butyral laminated windshield subjected to head impact: experiment and numerical simulation. Int. J. Impact Eng. (2015)

    Google Scholar 

  13. S. Mukherjee, A. Chawla, P. Mahajan, D. Mohan, N. Mane, M. Singh, Modeling of head impact on laminated glass windshield, in ed. by A. Charpenne. International IRCOBI Conference on the Biomechanics of Impacts IRCOBI, Montpellier, France, 2000, pp. 328–336

    Google Scholar 

  14. J. Chen, J. Xu, X. Yao, X. Xu, B. Liu, Y. Li, Different driving mechanisms of in-plane cracking on two brittle layers of laminated glass. Int. J. Impact Eng. 69, 80–85 (2014)

    Article  Google Scholar 

  15. B. Liu, Experimental research on energy absorption characteristic of PVB laminated windshield subjected to headform low-speed impact. J. Mech. Eng. 49, 128 (2013)

    Article  Google Scholar 

  16. J. Huang, Q. Liu, B. Nie, Y. Huang, H. Du, Y.A. Xia, Development and evaluation of pedestrian impact test facility based on EEVC/WG17 requirements. Autom. Eng. (2008)

    Google Scholar 

  17. S. Zhao, L.R. Dharani, X. Liang, L. Chai, S.D. Barbat, Crack initiation in laminated automotive glazing subjected to simulated head impact. Int. J. Crashworthiness 10, 229–236 (2005)

    Article  Google Scholar 

  18. S. Zhao, L.R. Dharani, L. Chai, S.D. Barbat, Analysis of damage in laminated automotive glazing subjected to simulated head impact. Eng. Fail. Anal. 13, 582–597 (2006)

    Article  Google Scholar 

  19. S. Zhao, L.R. Dharani, L. Chai, S.D. Barbat, Dynamic response of laminated automotive glazing impacted by spherical featureless headform. Int. J. Crashworthiness 11, 105–114 (2006)

    Article  Google Scholar 

  20. M. Timmel, S. Kolling, P. Osterrieder, P.A.D. Bois, A finite element model for impact simulation with laminated glass. Int. J. Impact Eng. 34, 1465–1478 (2007)

    Article  Google Scholar 

  21. G.a.M. Lj, A Cellular Solids (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  22. T. Pyttel, S. Weyer, Crash simulation with glassy polymers – constitutive model and application. Int. J. Crashworthiness 8, 433–442 (2003)

    Article  Google Scholar 

  23. T. Yasuki, S. Kojima, Application of aluminium honeycomb model using shell elements to offset deformable barrier model. Int. J. Crashworthiness 14, 449–456 (2009)

    Article  Google Scholar 

  24. T.S. Valera, N.R. Demarquette, Polymer toughening using residue of recycled windshields: PVB film as impact modifier. Eur. Polym. J. 44, 755–768 (2008)

    Article  Google Scholar 

  25. J. Xu, Y. Li, B. Liu, M. Zhu, D. Ge, Experimental study on mechanical behavior of PVB laminated glass under quasi-static and dynamic loadings. Compos. B Eng. 42, 302–308 (2011)

    Article  Google Scholar 

  26. H.C. Jo, Y.E. Kim, A study on the influence of the seat and head restraint foam stiffnesses on neck injury in low speed offset rear impacts. Int. J. Precis. Eng. Manuf. 10, 105–110 (2009)

    Article  Google Scholar 

  27. K. Siringam, N. Juntawong, S. Cha-Um, C. Kirdmanee, Aluminium foam-polymer composites: processing and characteristics. J. Mater. Sci. 44, 1506–1511 (2009)

    Article  Google Scholar 

  28. X. Chen, F.B. Surani, X. Kong, V.K. Punyamurtula, Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, 331 (2006)

    Google Scholar 

  29. L. Liu, Y. Qiao, X. Chen, Pressure-driven water infiltration into carbon nanotube: the effect of applied charges. Appl. Phys. Lett. 92, 2604 (2008)

    Google Scholar 

  30. Y. Qiao, L. Liu, X. Chen, Pressurized liquid in nanopores: a modified Laplace-Young equation. Nano Lett. 9, 984 (2009)

    Article  Google Scholar 

  31. L. Liu, X. Chen, W. Lu, A. Han, Y. Qiao, Infiltration of electrolytes in molecular-sized nanopores. Phys. Rev. Lett. 102, 184501 (2009)

    Article  Google Scholar 

  32. X. Chen, G. Cao, A. Han, V.K. Punyamurtula, L. Liu, P.J. Culligan, T. Kim, Y. Qiao, Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988 (2008)

    Article  Google Scholar 

  33. J. Zhao, P.J. Culligan, J.T. Germaine, X. Chen, Experimental study on energy dissipation of electrolytes in nanopores. Langmuir ACS J. Surf. Colloids 25, 12687 (2009)

    Article  Google Scholar 

  34. L.Y.U. Xu Jun, An overview on the technique of accident reconstruction for pedestrian-vehicle crash. Autom. Eng. 31, 1029–1033 (2009)

    Google Scholar 

  35. H.G. Xu, Y.H. Fan, Simulation research on form and kinematics law of contact process for automobile-pedestrian collision based on the coupling of PC-crash and MADYMO, in International Conference on Transportation Engineering, 2007, pp. 2235–2240

    Google Scholar 

  36. D.P. Wood, Impact and movement of pedestrians in frontal collisions with vehicles. ARCHIVE Proc. Inst. Mech. Eng. Part D Transp. Eng. 1984–1988 198202(2), 101–110 (1988)

    Article  Google Scholar 

  37. U. Schmucker, M. Beirau, M. Frank, D. Stengel, G. Matthes, A. Ekkernkamp, J. Seifert, Real-world car-to-pedestrian-crash data from an urban center. J. Trauma Manage. Outcomes 1–6 (2010)

    Google Scholar 

  38. L. Thollon, C. Jammes, M. Behr, P.J. Arnoux, C. Cavallero, C. Brunet, How to decrease pedestrian injuries: conceptual evolutions starting from 137 crash tests. J. Trauma 62, 512–519 (2007)

    Article  Google Scholar 

  39. J. Menčík, Strength and Fracture of Glass and Ceramics (Elsevier, 1992)

    Google Scholar 

  40. W. Holand, G.H. Beall, Glass Ceramic Technology (2012)

    Book  Google Scholar 

  41. X. Yuan, S.M. Li, Analysis of rectangular thin plate vibration under different support conditions. Aeroengine 31, 39–43 (2005)

    Google Scholar 

  42. C.W. Gadd, Use of a Weighted-Impulse Criterion for Estimating Injury Hazard (1966)

    Google Scholar 

  43. D. Marjoux, D. Baumgartner, C. Deck, R. Willinger, Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40, 1135 (2008)

    Article  Google Scholar 

  44. X.U. Jun, B.H. Liu, G.E. Dong-Yun, L.I. Yi-Bing, Research on dynamic response of PVB laminated windshield subjected to low velocity impact. Acta Armamentarii (2010)

    Google Scholar 

  45. V. Giavotto, Compatibility of vehicles with safety barriers: head ejection through side windows (2004)

    Article  Google Scholar 

  46. T. Maki, J. Kajzer, K. Mizuno, Y. Sekine, Comparative analysis of vehicle–bicyclist and vehicle–pedestrian accidents in Japan. Accid. Anal. Prev. 35, 927–940 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Li, Y. (2019). Pedestrian Protection and Energy Dissipation. In: Impact Behavior and Pedestrian Protection of Automotive Laminated Windshield. Springer, Singapore. https://doi.org/10.1007/978-981-13-2441-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2441-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2440-6

  • Online ISBN: 978-981-13-2441-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics