Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 368 Accesses

Abstract

NO and NO2 (NOx) in the atmosphere are major pollutants which cause serious environmental problems such as acid deposition, photochemical smog, and ozone hole. Fossil fuel combustion is the main source of NOx. Biological technology is an alternative for NOx removal from flue gas due to its low cost, high efficiency, and easy operation (Barnes et al. 1995). Biofilter and biotrickling filter are the two most commonly used structures, in both of which the denitrifying bacteria are immobilized onto the packing material in the reactor and reduce the NOx to N2 (Jin et al. 2005). However, the flue gas usually contains 2–10% oxygen, which would inhibit the denitrification process and result in poor NO removal efficiency (Lee and Apel 1998; Niu et al. 2014). Herein, the unique advantages of aerobic denitrification provide a new way to solve this problem (Jiang et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes, J. M., Apel, W. A., & Barrett, K. B. (1995). Removal of nitrogen oxides from gas streams using biofiltration. Journal of Hazardous Materials, 41, 315–326.

    Article  CAS  Google Scholar 

  • Bergaust, L., Shapleigh, J., Frostegard, A., & Bakken, L. (2008). Transcription and activities of NOx reductases in agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environmental Microbiology, 10, 3070–3081.

    Article  CAS  Google Scholar 

  • Braker, G., & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 69, 3476–3483.

    Article  CAS  Google Scholar 

  • Bru, D., Sarr, A., & Philippot, L. (2007). Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Applied and Environmental Microbiology, 73, 5971–5974.

    Article  CAS  Google Scholar 

  • Cabiscol, E., Tamarit, J., & Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen spicies. International Microbiology, 3, 3–8.

    Google Scholar 

  • Carr, G. J., & Ferguson, S. J. (1990). Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochimica et Biophysica Acta, 1017, 57–62.

    Article  CAS  Google Scholar 

  • Chen, J. W., & Strous, M. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta, 1827, 136–144.

    Article  CAS  Google Scholar 

  • Cheng, J., Zhu, X., Ni, J., & Borthwick, A. (2010). Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresource Technology, 101, 2729–2734.

    Article  CAS  Google Scholar 

  • Jiang, R., Huang, S., Chow, A. T., & Yang, J. (2009). Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. Journal of Hazardous Materials, 164, 432–441.

    Article  CAS  Google Scholar 

  • Jin, Y. M., Veiga, M. C., & Kennes, C. (2005). Bioprocesses for the removal of nitrogen oxides from polluted air. Journal of Chemical Technology and Biotechnology, 80, 483.

    Article  CAS  Google Scholar 

  • Kester, R. A., De Boer, W., & Laanbroek, H. J. (1997). Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Applied and Environmental Microbiology, 63, 3872–3877.

    CAS  Google Scholar 

  • Kharitonov, V. G., Sundquist, A. R., & Sharma, V. S. (1994). Kinetics of nitric oxide autoxidation in aqueous solution. Journal of Biological Chemistry, 269, 5881–5883.

    CAS  Google Scholar 

  • Knowles, R. (1982). Denitrification. Microbiology Reviews, 46, 43–70.

    CAS  Google Scholar 

  • Lee, B. D., & Apel, W. A. (1998, October). Evaluation of NOx removal using compost based biofilters operated under denitrifying conditions. (pp. 51–60). Proceedings of the 1998 USC-TRG Conference on Biofiltration, Los Angeles.

    Google Scholar 

  • Lee, B. D., Apel, W. A., & Smith, W. A. (2001). Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off-gas streams. Environmental Progress, 20, 157–166.

    Article  CAS  Google Scholar 

  • Lu, Y., Wang, J., Yu, Y., Shi, L., & Kong, F. (2014). Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress. Chemosphere, 117, 164–169.

    Article  CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Niu, H., Leung, D. Y., Wong, C., Zhang, T., Chan, M., & Leung, F. C. (2014). Nitric oxide removal by wastewater bacteria in a biotrickling filter. Journal of Environmental Sciences-China, 26, 555–565.

    Article  CAS  Google Scholar 

  • Otte, S., Grobben, N. G., Robertson, L. A., Jetten, M. S., & Kuenen, J. G. (1996). Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Applied and Environmental Microbiology, 62, 2421–2426.

    CAS  Google Scholar 

  • Philippot, L. (2002). Denitrifying genes in bacterial and archaeal genomes. Biochimica et Biophysica Acta, 1577, 355–376.

    Article  CAS  Google Scholar 

  • Poole, R. K., & Hughes, M. N. (2000). New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Molecular Microbiology, 36, 775–783.

    Article  CAS  Google Scholar 

  • Robertson, L. A., Dalsgaar, T., Revsbech, N. P., & Kuenen, J. G. (1995). Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiology Ecology, 18, 113–120.

    Article  CAS  Google Scholar 

  • Saleh-Lakha, S., Shannon, K. E., Goyer, C., Trevors, J. T., Zebarth, B. J., & Burton, D. L. (2008). Nitric oxide reductase gene expression and nitrous oxide production in nitrate-grown Pseudomonas mandelii. Applied and Environmental Microbiology, 74, 6876–6879.

    Article  CAS  Google Scholar 

  • Spiro, S. (2012). Nitrous oxide production and consumption: Regulation of gene expression by gas-sensitive transcription factors. Philosophical Transactions of the Royal Society B, 367, 1213–1225.

    Article  CAS  Google Scholar 

  • Su, J. J., Liu, B. Y., & Liu, C. Y. (2001). Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. Journal of Applied Microbiology, 90, 457–462.

    Article  CAS  Google Scholar 

  • Throback, I. N., Enwall, K., Jarvis, A., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 49, 401–417.

    Article  CAS  Google Scholar 

  • Vollack, K. U., & Zumft, W. G. (2001). Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. Journal of Bacteriology, 183, 2516–2526.

    Article  CAS  Google Scholar 

  • Wan, C. L., Yang, X., Lee, D. J., Du, M. A., Wan, F., & Chen, C. (2011). Aerobic denitrification by novel isolated strain using NO2-N as nitrogen source. Bioresource Technology, 102, 7244–7248.

    Article  CAS  Google Scholar 

  • Woertz, J. R., van Heiningen, W. N., van Eekert, M. H., Kraakman, N. J., Kinney, K. A., & van Groenestijn, J. W. (2002). Dynamic bioreactor operation: Effects of packing material and mite predation on toluene removal from off-gas. Applied Microbiology and Biotechnology, 58, 690–694.

    Article  CAS  Google Scholar 

  • Yang, W. F., Hsing, H. J., Yang, Y. C., & Shyng, J. Y. (2007). The effects of selected parameters on the nitric oxide removal by biofilter. Journal of Hazardous Materials, 148, 653–659.

    Article  CAS  Google Scholar 

  • Zheng, M., Li, C., Liu, S., Gui, M., & Ni, J. (2016). Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. Journal of Hazardous Materials, 318, 571–578.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, M. (2019). Denitrification Characteristics and Applications of Pseudomonas aeruginosa PCN-2. In: Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2432-1_5

Download citation

Publish with us

Policies and ethics