Skip to main content

Application of Pseudomonas stutzeri PCN-1 in N2O Emission Reduction

  • Chapter
  • First Online:
  • 371 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Since the 1990s, aerobic denitrifying bacteria have been used in the enhanced biological denitrification process of activated sludge systems. It was found that the supplementation of aerobic denitrifying bacteria could simultaneously make biological denitrification system finish nitrification and denitrification with the advantages of high denitrification efficiency, no alkali neutralization, and strong anti-shock loading ability, manifesting the superiority over traditional method of wastewater treatment (Bouchez et al. 2009; Yang et al. 2011). With the popularization and enlargement of sewage biological treatment process, the contribution of N2O emission to global greenhouse effect is increasing day by day. How to reduce the NO and N2O emission from sewage denitrification process has become a research hotspot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboobakar, A., Cartmell, E., Stephenson, T., Jones, M., Vale, P., & Dotro, G. (2013). Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Research, 47, 524–534.

    Article  CAS  Google Scholar 

  • Beaulieu, J. J., Shuster, W. D., & Febholz, J. A. (2010). Nitrous oxide emissions from a large, impounded river: The Ohio River. Environmental Science and Technology, 44, 7527–7533.

    Article  CAS  Google Scholar 

  • Bouchez, T., Patureau, D., Delgenes, J. P., & Moletta, R. (2009). Successful bacterial incorporation into activated sludge floc using alginate. Bioresource Technology, 100, 1031–1032.

    Article  CAS  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072.

    Article  CAS  Google Scholar 

  • Foley, J., De Haas, D., Yuan, Z., & Lant, P. (2010). Nitrous oxide generation in full scale BNR wastewater treatment plants. Water Research, 44, 831–844.

    Article  CAS  Google Scholar 

  • Fukumoto, Y., Suzuki, K., Osada, T., Kuroda, K., Hanajima, D., Yasuda, T., & Haga, K. (2006). Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. Environmental Science and Technology, 40, 6787–6791.

    Article  CAS  Google Scholar 

  • Ginige, M. P., Keller, J., & Blackall, L. L. (2005). Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and FISH. Applied and Environmental Microbiology, 71, 8683–8691.

    Article  CAS  Google Scholar 

  • Hanaki, K., Hong, Z., & Mstsuo, T. (1992). Production of nitrous oxide gas during denitrification of wastewater. Water Science and Technology, 26, 1027–1036.

    Article  CAS  Google Scholar 

  • Ishii, S., Yamamoto, M., Kikuchi, M., Oshima, K., Hattori, M., Otsuka, S., & Senoo, K. (2009). Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis. Applied and Environmental Microbiology, 75, 7070–7078.

    Article  CAS  Google Scholar 

  • Ishii, S., Ohno, H., Tsuboi, M., Otsuka, S., & Senoo, K. (2011). Identification and isolation of active N2O reducers in rice paddy soil. ISME Journal, 5, 1936–1945.

    Article  CAS  Google Scholar 

  • Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L., & Hallin, S. (2013). The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. The ISME Journal, 7, 417–426.

    Article  CAS  Google Scholar 

  • Kampschreur, M. J., Tan, N. C., Kleerebezem, R., Picioreanu, C., Jetten, M. S. M., & Van Loosdrecht, M. C. M. (2008). Effect of dynamic process conditions on nitrogen oxide emission from a nitrifying culture. Environmental Science and Technology, 42, 429–435.

    Article  CAS  Google Scholar 

  • Kornaros, M., Dokianakis, S. N., & Lyberatos, G. (2010). Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environmental Science & Technology, 44, 7245–7253.

    Article  CAS  Google Scholar 

  • Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M., & Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research, 46, 3563–3573.

    Article  CAS  Google Scholar 

  • Manucharova, N. A., Dobrovol’skaya, T. G., & Stepanov, A. L. (2000). Taxonomic composition of denitrifying bacteria in soddy podzolic soil. Microbiology, 69, 234–237.

    Article  CAS  Google Scholar 

  • Papirio, S., Ylinen, A., Zou, G., Peltol, M., Esposito, G., & Puhakka, J. A. (2014). Fluidizedbed denitrification for mine waters. Part I: Low pH and temperature operation. Biodegradation, 25, 425–435.

    Article  CAS  Google Scholar 

  • Park, K. Y., Kim, S. J., Jung, J. Y., & Lee, S. H. (2007). Reduction of N2O emission from biological nitrogen removal processes by Alcaligenes faecalis augmentation. Journal of Industrial and Engineering Chemistry, 13, 508–511.

    CAS  Google Scholar 

  • Sommer, J., Ciplak, A., Sumer, E., Benckiser, G., & Ottow, J. C. G. (1998). Quantification of emitted and retained N2O in a municipal wastewater treatment plant with activated sludge and nitrification-denitrification units. Agrobiological Research, 51, 59–73.

    CAS  Google Scholar 

  • Tallec, G., Garnier, J., Billen, G., & Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Research, 40, 2972–2980.

    Article  CAS  Google Scholar 

  • Tago, K., Ishii, S., Nishizawa, T., Otsuka, S., & Senoo, K. (2011). Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microb Environ, 26, 30–35.

    Article  Google Scholar 

  • Weiss, R. F., & Price, B. A. (1984). Nitrous oxide solubility in water and seawater. Marine Chemistry, 8, 347–359.

    Article  Google Scholar 

  • Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46, 1027–1037.

    Article  CAS  Google Scholar 

  • Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., & Peng, Y. (2009). N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method. Environmental Science and Technology, 43, 9400–9406.

    Article  CAS  Google Scholar 

  • Yang, X. P., Wang, S. M., Zhang, D. W., & Zhou, L. X. (2011). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 102, 854–862.

    Article  CAS  Google Scholar 

  • Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. V., & Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science and Technology, 44, 1313–1319.

    Article  CAS  Google Scholar 

  • Zhang, T., Shao, M. F., & Ye, L. (2012). 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal, 6, 1137–1147.

    Article  CAS  Google Scholar 

  • Zheng, M. S., Tian, Y. H., Liu, T., Ma, T., Li, L., Li, C., Ahmad, M., Chen, Q., & Ni J.R.*. (2015). Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: Generation, spatial variation and microbial interpretation. Bioresource Technology, 179, 510–517.

    Article  CAS  Google Scholar 

  • Zhou, Y., Pijuan, M., Zeng, R. J., & Yuan, Z. G. (2008). Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environmental Science and Technology, 42, 8260–8265.

    Article  CAS  Google Scholar 

  • Zhou, X. W., Li, S. G., Li, W., Jiang, D. M., Han, K., Wu, Z. H., & Li, Y. Z. (2014). Myxobacterial community is a predominant and highly diverse bacterial group in soil niches. Environmental Microbiology Reports, 6, 45–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, M. (2019). Application of Pseudomonas stutzeri PCN-1 in N2O Emission Reduction. In: Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2432-1_4

Download citation

Publish with us

Policies and ethics