Skip to main content

Mathematical Model of Quorum Sensing and Biofilm

  • Chapter
  • First Online:
Implication of Quorum Sensing System in Biofilm Formation and Virulence

Abstract

Bacteria are unicellular microorganism, which are found in nature quite often. They talk to each other using chemical signaling process (quorum sensing) and ion-channel mediated electrical signaling mechanism. Quorum sensing is a density dependent bacterial collective behaviour and/or cell-to -cell communication mechanism. This widespread bacterial behaviour is related with biofilm formation, gene expression, swarming, virulence and bioluminescence. In a recent realization (experimental and theoretical study), it was observed that bacteria can also talk to each other through the wave of potassium and an oscillatory dynamics was noticed in bacterial biofilms. In this present chapter, we present two different mathematical frameworks of bacterial communication system. The first model is based on the bacterial density dependent behaviour with up-regulation and down-regulation of the production of quorum sensing molecules. Second model, we introduce two different types of the bacterial communication process within a mathematical framework, which is also related to the biofilm formation. This mathematical framework combine quorum sensing mechanism as well as electrical signaling process. We discuss different spatiotemporal patterns and chaotic behaviour in this communication system. Moreover, it gives a significant and the fundamental role of noise in the complex biological conversation system. Finally we propose some open problem in the last section of this chapter, which are helpful for the future research of the bacterial communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104, 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray, K. M., Passador, L., Iglewski, B. H., & Greenberg, E. P. (1994). Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. Journal of Bacteriology, 176, 3076–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuqua, C., Winans, S. C., & Greenberg, E. P. (1996). Census and consensus in bacterialecosystems: The LuxRLuxI family of quorum-sensing transcriptional regulators. Annual Review of Microbiology, 50, 727–751.

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro, J. A. (1998). Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology, 52, 81–104.

    Article  CAS  PubMed  Google Scholar 

  5. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55(1), 165–199.

    Article  CAS  PubMed  Google Scholar 

  6. Shapiro, J. A. (2007). Bacteria are small but not stupid: Cognition, natural genetic engineering and socio-bacteriology. Studies in History and Philosophy of Science Part C. Studies in History and Philosophy of Biological and Biomedical Sciences, 38(4), 807–819.

    Article  CAS  PubMed  Google Scholar 

  7. Williams, P., Winzer, K., Chan, W. C., & Camara, M. (2007). Look who’s talking: Communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1483), 1119–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Majumdar, S., & Mondal, S. (2016). Conversation game: Talking bacteria. Journal Cell Communication Signal, 10(4), 331–335.

    Article  Google Scholar 

  9. Majumdar, S., & Pal, S. (2016). Quorum sensing: A quantum perspective. Journal of Cell Communication and Signaling, 10(3), 173–175.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Majumdar, S., Datta, S., & Roy, S. (2012). Mathematical modelling of quorum sensing and bioluminescence in bacteria. International Journal of Advance and Applied Science, 1(3), 139–146.

    Google Scholar 

  11. Majumdar, S. (2013). Hydrodynamic conditions of quorum sensing in bacteria. International Journal of Biochemistry and Biophysics, 2(1), 1–4.

    Google Scholar 

  12. Majumdar, S. (2016). Math behind quorum sensing. Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  13. Klapper, I., & Dockery, J. (2010). Mathematical description of microbial biofilms. SIAM Review, 52(2), 221–265.

    Article  Google Scholar 

  14. National Institutes of Health. (2007). Immunology of biofilms (R01). http://grants.nih.gov/grants/guide/pa-files/PA-07-288.html.

  15. Majumdar, S., & Pal, S. (2017). Cross-species communication in bacterial world. Journal Cell Communication and Signaling, 11(2), 187–190.

    Article  Google Scholar 

  16. Doyle, D. A., Cabral, M. J., Pfuetzner, A. R., Kuo, A., Gulbis, M. J., Cohen, L. S., Chait, T. B., & MacKinnon, R. (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 280(5360), 69–77.

    Article  CAS  PubMed  Google Scholar 

  17. Prindle, A., Jintao, L., Munehiro, A., San, L., Jordi, G.-O., & Süel, G. M. (2015). Ion channels enable electrical communication in bacterial communities. Nature, 527(7576), 59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beagle, S. D., & Lockles, S. W. (2015). Electrical signaling goes bacterial. Nature, 527, 44.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J., Arthur, P., Jacqueline, H., Maral, G.-S., Munehiro, A., Lee Dong-yeon, D., San, L., Jordi, G.-O., & Süel, G. M. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature, 523(7562), 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphries, J., Xiong, L., Liu, J., Prindle, A., Yuan, F., Arjes, H. A., Tsimring, L., & Süel, G. M. (2017). Species-independent attraction to biofilms through electrical signaling. Cell, 168(1), 200–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Majumdar, S., & Pal, S. (2017). Bacterial intelligence: Imitation games, time-sharing and long- range quantum coherence. Journal Cell Communication and Signaling, 11(3), 281–284.

    Article  Google Scholar 

  22. Liu, J., Corral, M. R., Prindle, A., Dong-yeon, L. D., Larkin, J., Sagarra, G. M., Ojalvo, G. J., & Süel, M. G. (2017). Coupling between distant biofilms and emergence of nutrient time-sharing. Science, 356(6338), 638–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Majumdar, S.(2017). Experimental evidence of coherence in bacterial communication system. Science (eLetter).

    Google Scholar 

  24. Majumdar, S., & Roy, S. (2017). The role of coherence in bacterial communication. bioRxiv. https://doi.org/10.1101/119503.

  25. Ward, P. J., King, R. J., Koerber, J. A., Williams, P., Croft, M. J., & Sockett, E. R. (2001). Mathematical modelling of quorum sensing in bacteria. IMA Journal of Mathematics Applied in Medicine and Biology, 18(3), 263–292.

    Article  CAS  PubMed  Google Scholar 

  26. Majumdar, S., & Roy, S. (2018). Relevance of quantum mechanics in bacterial communication. Neuro Quantology, 16(3), 1–6.

    Google Scholar 

  27. Roy, S., & Llinas, R. (2016). Non-local hydrodynamics of swimming bacteria and self-activated process., BIOMAT 2015 Proceedings of the International Symposium on Mathematical and Computational Biology. World Scientific 153–165.

    Google Scholar 

  28. Majumdar, S., & Roy, S. (2017). Spatiotemporal patterns and chaos in non-equilibrium bacterial communication. 17th International symposium on mathematical and computational biology, at Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.

    Google Scholar 

  29. Majumdar, S., Roy, S., & Llinas, R. (2017). Bacterial conversations and pattern formation. bioRxiv. https://doi.org/10.1101/098053.

  30. Majumdar, S. (2016). Mathematical model of talking bacteria. Workshop on industrial and applied mathematics. Hamburg: University of Hamburg.

    Google Scholar 

  31. Roy, S., & Llinas, R. (2009). Relevance of quantum mechanics on some aspects of ion channel function. Comptes Rendus Biologies, 332(6), 517–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Majumdar, S. (2017). Bacterial communication: classical and quantum aspects. AquaDiva Recruitment Symposium, Friedrich-Schiller-Universitat Jena, Germany.

    Google Scholar 

Download references

Acknowledgement

One of the authors (SR) greatly acknowledges Homi Bhabha Council, Mumbai for the grant under which the work has been done.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, S., Roy, S. (2018). Mathematical Model of Quorum Sensing and Biofilm. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_24

Download citation

Publish with us

Policies and ethics