Skip to main content

Quorum Sensing in Streptococcus pyogenes and Their Role in Establishment of Disease

  • Chapter
  • First Online:
Book cover Implication of Quorum Sensing System in Biofilm Formation and Virulence

Abstract

The social behaviour of bacteria for the fulfilment of different physiological activities is defined as Quorum Sensing (QS). This ranges from conjugation, symbiosis, virulence, antibiotic production, sporulation and biofilm formation. Streptococcus pyogenes which is also named as group A streptococcus (GAS) is a Gram-positive bacteria, is reported to cause diseases strictly in human. The different QS mechanisms in GAS (group A streptococcus) reported till date include Rgg-SHP quorum sensing pathway, SilC (streptococcal invasion locus) quorum-sensing pathway, Lantibiotic regulatory systems, LuxS and AI-2. The proteins of Rgg family are conserved transcription factors, which is modulated by short peptides, thus involve in the biofilm formation and virulence of bacteria. The SilC mechanism involved in the invasive tissue disease and also in the biofilm formation, Lantibiotic regulatory systems aids bacteria in adopting different immune evasion strategies and thus allow them to persist in the harsh hostile environment. Lastly, LuxS and AI-2 are the common mechanisms in all the different bacterial species including streptococcus for the virulence, motility and bio-film formation. The current chapter focuses on the detail mechanism of all the four different pathways along with the role of Quorum Sensing for the establishment of disease in the host, the immune evasion strategies of bacteria using Quorum sensing (QS) and future clinical perspective with possible applications. This may help to increase our vision towards putative vaccine targets by exploiting the mechanisms involved in Quorum Sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouwer, S., Barnett, T. C., Rivera-hernandez, T., Rohde, M., & Walker, M. J. (2016). Streptococcus pyogenes adhesion and colonization. FEBS Letters, 590, 3739–3757. https://doi.org/10.1002/1873-3468.12254.

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews, 13(3), 470–511.

    Article  CAS  Google Scholar 

  3. Martin, W. J., Steer, A. C., Smeesters, P. R., et al. (2015). Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmunity Reviews, 14(8), 710–725. https://doi.org/10.1016/j.autrev.2015.04.005.

    Article  PubMed  Google Scholar 

  4. Carapetis, J. R., Steer, A. C., Mulholland, E. K., & Weber, M. (2005, November). The global burden of group A streptococcal diseases. The Lancet Infectious Diseases, 5, 685–694.

    Article  Google Scholar 

  5. Sika-Paotonu, D., Beaton, A., Raghu, A., et al. (2017). Acute rheumatic fever and rheumatic heart disease. In J. J. Ferretti, D. L. Stevens, & V. A. Fischetti (Eds.), Streptococcus pyogenes: Basic biology to clinical manifestations. https://www.ncbi.nlm.nih.gov/books/NBK425394/.

  6. Šmitran, A., Vuković, D., Gajić, I., Marinković, J., Ranin, L. (2015, August). Effects of penicillin and erythromycin on adherence of invasive and noninvasive isolates of Streptococcus pyogenes to laminin. Memórias do Instituto Oswaldo Cruz, 110, 684–686. https://doi.org/10.1590/0074-02760150092.

    Article  Google Scholar 

  7. Bowen, A. C., Tong, S. Y., Chatfield, M. D., & Carapetis, J. R. (2014). The microbiology of impetigo in indigenous children: Associations between Streptococcus pyogenes, Staphylococcus aureus, scabies, and nasal carriage. BMC Infectious Diseases, 14(1), 727.

    Google Scholar 

  8. Perea-mejı, L. M., Inzunza-montiel, A. E., & Cravioto, A. (2002). Molecular characterization of group A streptococcus strains isolated during a scarlet fever outbreak. Journal of Clinical Microbiology, 40(1), 278–280. https://doi.org/10.1128/JCM.40.1.278.

    Article  Google Scholar 

  9. Shea, P. R., Ewbank, A. L., Gonzalez-Lugo, J. H., Martagon-Rosado, A. J., Martinez-Gutierrez, J. C., Rehman, H. A., et al. (2011). Group a Streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002–2010. Emerging Infectious Diseases, 17(11), 2010.

    Google Scholar 

  10. Fam, A. (2009). Diagnosis and treatment of streptococcal pharyngitis. 383–390.

    Google Scholar 

  11. Bright, P. D., Mayosi, B. M., & Martin, W. J. (2016.;(table 1)). An immunological perspective on rheumatic heart disease pathogenesis: More questions than answers. Heart, 1527–1532. https://doi.org/10.1136/heartjnl-2015-309188.

    Article  Google Scholar 

  12. Raynes, J. M., Frost, H. R., Williamson, D. A., Young, P. G., Baker, E. N., Steemson, J. D., et al. (2016). Serological evidence of immune priming by group a streptococci in patients with acute rheumatic fever. Frontiers in Microbiology, 7, 1119.

    Google Scholar 

  13. Maurice, J. (2013). Rheumatic heart disease back in the limelight rheumatic heart disease is drawing renewed attention from the health community and from. Lancet, 382(9898), 1085–1086. https://doi.org/10.1016/S0140-6736(13)61972-8.

    Article  PubMed  Google Scholar 

  14. Kalil, J. (2006, March). Molecular mimicry in autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. https://doi.org/10.1080/08916930500484674.

    Article  CAS  Google Scholar 

  15. Tandon, R. (2012). Rheumatic fever pathogenesis: Approach in research needs change. Annals of Pediatric Cardiology. https://doi.org/10.4103/0974-2069.99621.

    Article  Google Scholar 

  16. Cunningham, M. W. (2012). Streptococcus and rheumatic fever. Current Opinion in Rheumatology, 24(4), 408–416. https://doi.org/10.1097/BOR.0b013e32835461d3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beaton, A., & Carapetis, J. (2015). The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: Implications for practice in low-income and middle-income countries. Heart Asia, 7, 7–11. https://doi.org/10.1136/heartasia-2015-010648.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jackson, S. J., Steer, A. C., & Campbell, H. (2011). Systematic review: Estimation of global burden of non- suppurative sequelae of upper respiratory tract infection: Rheumatic fever and post-streptococcal glomerulonephritis. Tropical Medicine & International Health, 16(1), 2–11. https://doi.org/10.1111/j.1365-3156.2010.02670.x.

    Article  Google Scholar 

  19. Speers, D. J., Levy, A., Gichamo, A., Eastwood, A., & Leung, M. J. (2017). M protein gene (emm type) analysis of group a Streptococcus isolates recovered during an acute glomerulonephritis outbreak in northern western Australia. Pathology, 49(7), 765–769.

    Article  CAS  Google Scholar 

  20. Sriskandan, S., & Altmann, D. M. (2008). The immunology of sepsis. The Journal of Pathology, 214, 211–223. https://doi.org/10.1002/path.

    Article  CAS  PubMed  Google Scholar 

  21. Zakour, N. L. B., Venturini, C., Beatson, S. A., & Walker, M. J. (2012). Analysis of a streptococcus pyogenes puerperal sepsis cluster by use of whole-genome sequencing. Journal of Clinical Microbiology, 50(7), 2224–2228. https://doi.org/10.1128/JCM.00675-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin, J.M., Green, M. (2006). Group A streptococcus. 140–148. https://doi.org/10.1053/j.spid.2006.07.001.

    Article  Google Scholar 

  23. Low, D. E. (2013). Toxic Shock syndrome major advances in pathogenesis, but not treatment. Critical Care Clinics, 29(3), 651–675. https://doi.org/10.1016/j.ccc.2013.03.012.

    Article  PubMed  Google Scholar 

  24. Vähäkuopus, S., Vuento, R., Siljander, T., & Syrjänen, J. (2012). Distribution of emm types in invasive and non-invasive group A and G streptococci. European Journal of Clinical Microbiology, 1251–1256. https://doi.org/10.1007/s10096-011-1436-2.

    Article  Google Scholar 

  25. Whatmore, A. M., & Kumar, M. P. (2018). EMM types of streptococcus pyogenes in Chennai. Indian Journal of Medical Microbiology, 19(3), 161–163.

    Google Scholar 

  26. Rudolph, K., Bruce, M. G., Bruden, D., et al. (2016). Epidemiology of invasive group A streptococcal disease in Alaska, 2001 to 2013. Journal of Clinical Microbiology, 54(1), 134–141. https://doi.org/10.1128/JCM.02122-15 Editor.

    Article  CAS  PubMed  Google Scholar 

  27. Cole, J. N., Barnett, T. C., Nizet, V., & Walker, M. J. (2011). Molecular insight into invasive group A streptococcal disease. Nature Publishing Group, 9(10), 724–736. https://doi.org/10.1038/nrmicro2648.

    Article  CAS  Google Scholar 

  28. Bentley, C.C., Shakhnovic, E.A., Wessels, M.R. (2005). Cytolysin-dependent evasion of lysosomal killing.

    Google Scholar 

  29. Timmer, A. M., Timmer, J. C., Pence, M. A., et al. (2009). Streptolysin O promotes group A streptococcus immune evasion by accelerated macrophage apoptosis*. Journal of Biological Chemistry, 284(2), 862–871. https://doi.org/10.1074/jbc.M804632200.

    Article  CAS  PubMed  Google Scholar 

  30. Fiedler, T., Köller, T., & Kreikemeyer, B. (2015). Streptococcus pyogenes biofilms—Formation, biology, and clinical relevance. Frontiers in Cellular and Infection Microbiology, 5, 15.

    Google Scholar 

  31. Marks, L. R., Mashburn-Warren, L., Federle, M. J., & Hakansson, A. P. (2014). Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. The Journal of Infectious Diseases, 210(1), 25–34.

    Article  CAS  Google Scholar 

  32. Young, C., Holder, R.C., Dubois, L., Sean, D. (2016). Streptococcus pyogenes biofilm introduction to biofilms. 1–34.

    Google Scholar 

  33. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.

    Article  CAS  Google Scholar 

  34. Chang, J. C., LaSarre, B., Jimenez, J. C., Aggarwal, C., & Federle, M. J. (2011). Two group a streptococcal peptide pheromones act through opposing rgg regulators to control biofilm development. PLoS Pathogens, 7(8), e1002190. https://doi.org/10.1371/journal.ppat.1002190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makthal, N., Gavagan, M., Do, H., Olsen, R. J., Musser, J. M., & Kumaraswami, M. (2016). Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes. Molecular Microbiology, 99(6), 1119–1133. https://doi.org/10.1111/mmi.13294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang, J. C., & Federle, M. J. (2016). PptAB exports Rgg quorum-sensing peptides in streptococcus. PLoS One, 11(12), 1–12. https://doi.org/10.1371/journal.pone.0168461.

    Article  CAS  Google Scholar 

  37. Aggarwal, C., Jimenez, J. C., Nanavati, D., & Federle, M. J. (2014). Multiple length peptide-pheromone variants produced by streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation. The Journal of Biological Chemistry, 289(32), 22427–22436. https://doi.org/10.1074/jbc.M114.583989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mashburn-Warren, L., Morrison, D. A., & Federle, M. J. (2012). The cryptic competence pathway in streptococcus pyogenes is controlled by a peptide pheromone. Journal of Bacteriology, 194(17), 4589–4600. https://doi.org/10.1128/JB.00830-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hidalgo-grass, C., Ravins, M., Dan-goor, M., Jaffe, J., Moses, A. E., & Hanski, E. (2002). A locus of group A streptococcus involved in invasive disease and DNA transfer. Molecular Microbiology, 46, 87–99.

    Article  CAS  Google Scholar 

  40. Belotserkovsky, L., Baruch, M., Peer, A., et al. (2009). Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathogens, 5(11), e1000651. https://doi.org/10.1371/journal.ppat.1000651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dischinger, J., Wiedemann, I., Bierbaum, G. (n.d.). H-GS. Handbook of biologically active peptides (2nd Edition). https://www.sciencedirect.com/science/article/pii/B9780123850959000191.

  42. Armstrong, B. D., Herfst, C. A., Tonial, N. C., Wakabayashi, A. T., Zeppa, J. J., & McCormick, J. K. (2016). Identification of a two-component class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Scientific Reports, 6, 36233.

    Google Scholar 

  43. Phelps, H. A., & Neely, M. N. (2007). SalY of the streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infection and Immunity, 75(9), 4541–4551. https://doi.org/10.1128/IAI.00518-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kleerebezem, M. (2004). Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. 25. https://doi.org/10.1016/j.peptides.2003.10.021.

    Article  CAS  Google Scholar 

  45. Kawada-matsuo, M., Tatsuno, I., Arii, K., et al. (2016). Two-component systems involved in susceptibility to nisin A in streptococcus pyogenes. Applied and Environmental Microbiology, 82(19), 5930–5939. https://doi.org/10.1128/AEM.01897-16.Editor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wescombe, P. A., & Tagg, J. R. (2003). Purification and characterization of streptin, a type A1 lantibiotic produced by streptococcus pyogenes. Applied and Environmental Microbiology, 69(5), 2737–2747. https://doi.org/10.1128/AEM.69.5.2737.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schauder, S. Shokat, K. Surette, M. G. Bassler, B. L. (2001). The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. https://doi.org/10.1046/j.1365-2958.2001.02532.x.

    Article  CAS  Google Scholar 

  48. Marouni, M. J., & Sela, S. (2003). The luxS gene of streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infection and Immunity, 71(10), 5633–5639. https://doi.org/10.1128/IAI.71.10.5633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Basavaraju, M., Sisnity, V. S., & Palaparthy, R. (2016). ScienceDirect Quorum quenching: Signal jamming in dental plaque biofilms. Journal of Dental Sciences, 11(4), 349–352. https://doi.org/10.1016/j.jds.2016.02.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P., Pallaval Veera Bramhachari (2018). Quorum Sensing in Streptococcus pyogenes and Their Role in Establishment of Disease. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_23

Download citation

Publish with us

Policies and ethics