Skip to main content

Novel Insights on the Bacillus Quorum Sensing Mechanism: Its Role in Competence, Virulence, Sporulation and Biofilm Formation

  • Chapter
  • First Online:
Book cover Implication of Quorum Sensing System in Biofilm Formation and Virulence

Abstract

A large number of Bacillus sps are ubiquitous and can modulate in diverse environments. The QS response in Bacillus sp. involves expression of adaptive extracellular factors like food-degrading enzymes, virulence factors, antibiotics, or biosurfactants. They produce QS signals as small peptide molecules i.e. autoinducer peptides (AIP) processed from their oligopeptide precursors. Members of the Rap-Phr family of QS systems in Bacillus subtilis are involved in regulation of competence, sporulation and biofilm formation. Moreover they possess a typical Com QXPA QS system which controls the expression of nearly 200 genes, including both extracellular and intracellular factors. However in B. thuringenesis, the virulence expression, sporulation and nectotropism are strongly regulated by NprR/NprX signal regulators which belong to RNPP family. NprR/NprX QS system was identified to regulate the expression of pathogenesis in B.anthracis, which causes fatal pulmonary infection. Two established QS systems PlcR/PapR and NprR/NprX for virulence regulation were found in different species of Bacillus. Current review emphasizes on the comparative study of different QS systems in Bacilli which control the pathogenesis and development processes. Despite the fundamental biological importance in medicine and industry, Bacillus QS molecules can serve as potential biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agaisse, H., Gominet, M., Økstad, O. A., Kolstø, A. B., & Lereclus, D. (1999). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Molecular Microbiology, 32(5), 1043–1053.

    Article  CAS  Google Scholar 

  2. Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., & Dubnau, D. (2002). Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 44(6), 1561–1573.

    Article  CAS  Google Scholar 

  3. Anne Shank, E., & Kolter, R. (2011). Extracellular signaling and multicellularity in Bacillus subtilis. Current Opinion in Microbiology, 14(6), 741–747. https://doi.org/10.1016/j.mib.2011.09.016.

    Article  CAS  PubMed Central  Google Scholar 

  4. Bareia, T., Pollak, S., & Eldar, A. (2018). Self-sensing in Bacillus subtilis quorum-sensing systems. Nature Microbiology, 3(1), 83.

    Article  CAS  Google Scholar 

  5. Bendori, S. O., Pollak, S., Hizi, D., & Eldar, A. (2015). The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. Journal of Bacteriology, 197(3), 592–602.

    Article  Google Scholar 

  6. Borriss, R., Danchin, A., Harwood, C. R., Médigue, C., Rocha, E. P., Sekowska, A., & Vallenet, D. (2018). Bacillus subtilis, the model gram-positive bacterium: 20 years of annotation refinement. Microbial Biotechnology, 11(1), 3–17.

    Article  Google Scholar 

  7. Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382–398.

    Article  Google Scholar 

  8. Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., ... & Lereclus, D. (2008). Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Research, 36(11), 3791–3801.

    Article  CAS  Google Scholar 

  9. Brillard, J., Susanna, K., Michaud, C., Dargaignaratz, C., Gohar, M., Nielsen-Leroux, C., & Broussolle, V. (2008). The YvfTU two-component system is involved in plcR expression in Bacillus cereus. BMC Microbiology, 8(1), 183.

    Article  Google Scholar 

  10. Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology, 93(4), 587–598.

    Article  CAS  Google Scholar 

  11. Comella, N., & Grossman, A. D. (2005). Conservation of genes and processes controlled by the quorum response in bacteria: Characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Molecular Microbiology, 57(4), 1159–1174.

    Article  CAS  Google Scholar 

  12. Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., et al. (2007). Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proceedings of the National Academy of Sciences, 104(47), 18490–18495.

    Article  CAS  Google Scholar 

  13. Dogsa, I., Choudhary, K. S., Marsetic, Z., Hudaiberdiev, S., Vera, R., Pongor, S., & Mandic-Mulec, I. (2014). ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: A census in prokaryotic genomes. PloS One, 9(5), e96122.

    Article  Google Scholar 

  14. Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L., & Zhang, L. H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Applied and Environmental Microbiology, 68(4), 1754–1759.

    Article  CAS  Google Scholar 

  15. Duanis-Assaf, D., Steinberg, D., Chai, Y., & Shemesh, M. (2016). The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Frontiers in Microbiology, 6, 1517.

    Google Scholar 

  16. Dubois, T., Faegri, K., Gélis-Jeanvoine, S., Perchat, S., Lemy, C., Buisson, C., & Slamti, L. (2016). Correction: Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathogens, 12(11), e1006049.

    Article  Google Scholar 

  17. Ehling-Schulz, M., Frenzel, E., & Gohar, M. (2015). Food–bacteria interplay: Pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 6, 704.

    Google Scholar 

  18. Esmaeilishirazifard, E., De Vizio, D., Moschos, S. A., & Keshavarz, T. (2017). Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. AMB Express, 7(1), 78.

    Article  Google Scholar 

  19. Fujiya, M., Musch, M. W., Nakagawa, Y., Hu, S., Alverdy, J., Kohgo, Y., & Chang, E. B. (2007). The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe, 1(4), 299–308.

    Article  CAS  Google Scholar 

  20. Gohar, M., Gilois, N., Graveline, R., Garreau, C., Sanchis, V., & Lereclus, D. (2005). A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics, 5(14), 3696–3711.

    Article  CAS  Google Scholar 

  21. Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., et al. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS One, 3(7), e2793.

    Article  Google Scholar 

  22. Gominet, M., Slamti, L., Gilois, N., Rose, M., & Lereclus, D. (2001). Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Molecular Microbiology, 40(4), 963–975.

    Article  CAS  Google Scholar 

  23. Hamoen, L. W., Venema, G., & Kuipers, O. P. (2003). Controlling competence in Bacillus subtilis: Shared use of regulators. Microbiology, 149(1), 9–17.

    Article  CAS  Google Scholar 

  24. Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752.

    Article  CAS  Google Scholar 

  25. Hayashi, S., Usami, S., Nakamura, Y., Ozaki, K., & Okada, M. (2015). Identification of a quorum sensing pheromone posttranslationally farnesylated at the internal tryptophan residue from Bacillus subtilis subsp. natto. Bioscience, Biotechnology, and Biochemistry, 79(10), 1567–1569.

    Article  CAS  Google Scholar 

  26. Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., Tzou, D. Y., & Liu, S. T. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PloS One, 10(12), e0144306.

    Article  Google Scholar 

  27. Huillet, E., Tempelaars, M. H., André-Leroux, G., Wanapaisan, P., Bridoux, L., Makhzami, S., et al. (2012). PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase. PloS one, 7(12), e51047.

    Article  CAS  Google Scholar 

  28. Jiang, M., Shao, W., Perego, M., & Hoch, J. A. (2000a). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Molecular Microbiology, 38, 535–542.

    Article  CAS  Google Scholar 

  29. Johnson, D. I. (2018). Bacillus spp. bacterial pathogens and their virulence factors (pp 41–50).

    Google Scholar 

  30. Jones, M. B., & Blaser, M. J. (2003). Detection of a luxS-signaling molecule in Bacillus anthracis. Infection and Immunity, 71(7), 3914–3919.

    Article  CAS  Google Scholar 

  31. Jones, M. B., Peterson, S. N., Benn, R., Braisted, J. C., Jarrahi, B., Shatzkes, K., et al. (2010). Role of luxS in Bacillus anthracis growth and virulence factor expression. Virulence, 1(2), 72–83.

    Article  Google Scholar 

  32. Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S., & Gominet, M. (2000). Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. International Journal of Medical Microbiology, 290(4–5), 295–299.

    Article  CAS  Google Scholar 

  33. Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L. W., Dorenbos, R., et al. (2002). The bdbDC operon of Bacillus subtilisencodes thiol-disulfide oxidoreductases required for competence development. Journal of Biological Chemistry, 277(9), 6994–7001.

    Article  CAS  Google Scholar 

  34. Mielich-Süss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environmental Microbiology, 17(3), 555–565.

    Article  Google Scholar 

  35. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165–199.

    Article  CAS  Google Scholar 

  36. Monnet, V., & Gardan, R. (2015). Quorum-sensing regulators in gram-positive bacteria: ‘Cherchez le peptide’. Molecular Microbiology, 97(2), 181–184.

    Article  CAS  Google Scholar 

  37. Okada, M., Sato, I., Cho, S. J., Iwata, H., Nishio, T., Dubnau, D., & Sakagami, Y. (2005). Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nature Chemical Biology, 1(1), 23–24.

    Article  CAS  Google Scholar 

  38. Økstad, O. A., Gominet, M., Purnelle, B., Rose, M., Lereclus, D., & Kolstø, A. B. (1999). Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology, 145(11), 3129–3138.

    Article  Google Scholar 

  39. Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M., & Mandic-Mulec, I. (2015). Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microbial Biotechnology, 8(3), 527–540.

    Article  CAS  Google Scholar 

  40. Pawar, S., & Lahiri, C. (2018). Quorum sensing: An imperative longevity weapon in bacteria. African Journal of Microbiology Research, 12(4), 96–104.

    Article  CAS  Google Scholar 

  41. Perchat, S., Talagas, A., Poncet, S., Lazar, N., de La Sierra-Gallay, I. L., Gohar, M., et al. (2016a). How quorum sensing connects sporulation to necrotrophism in Bacillus thuringiensis. PLoS Pathogens, 12(8), e1005779.

    Article  Google Scholar 

  42. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51(5), 553–563.

    Article  CAS  Google Scholar 

  43. Pollak, S., Bendori, S. O., & Eldar, A. (2015). A complex path for domestication of B. subtilis sociality. Current Genetics, 61(4), 493–496.

    Article  CAS  Google Scholar 

  44. Pomerantsev, A. P., Camp, A., & Leppla, S. H. (2009). A new minimal replicon of Bacillus anthracis plasmid pXO1. Journal of Bacteriology, 191(16), 5134–5146.

    Article  CAS  Google Scholar 

  45. Redfield, R. J. (2002). Is quorum sensing a side effect of diffusion sensing? Trends in Microbiology, 10(8), 365–370.

    Article  CAS  Google Scholar 

  46. Rocha-Estrada, J., Aceves-Diez, A. E., Guarneros, G., & de la Torre, M. (2010). The RNPP family of quorumsensing proteins in gram-positive bacteria. Applied Microbiology and Biotechnology, 87(3), 913–923.

    Article  CAS  Google Scholar 

  47. Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427.

    Article  Google Scholar 

  48. Ruzheinikov, S. N., Das, S. K., Sedelnikova, S. E., Hartley, A., Foster, S. J., Horsburgh, M. J., et al. (2001). The 1.2 Å structure of a novel quorum-sensing protein, Bacillus subtilis LuxS1. Journal of Molecular Biology, 313(1), 111–122.

    Article  CAS  Google Scholar 

  49. Slamti, L., & Lereclus, D. (2002). A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. The EMBO Journal, 21(17), 4550–4559.

    Article  CAS  Google Scholar 

  50. Slamti, L., & Lereclus, D. (2005). Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. Journal of Bacteriology, 187(3), 1182–1187.

    Article  CAS  Google Scholar 

  51. Špacapan, M., Danevcic, T., & Mandic-Mulec, I. (2018). ComX-induced exoproteases degrade ComX in Bacillus subtilis PS 216. Frontiers in Microbiology, 9, 105.

    Article  Google Scholar 

  52. Verplaetse, E., Slamti, L., Gohar, M., & Lereclus, D. (2017). Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Research in Microbiology, 168(4), 388–393.

    Article  CAS  Google Scholar 

  53. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11(3), 157.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the opportunity given by the editor Dr. P. Veera Bramha Chari for writing this book chapter. We thank our Management and Principal of Bhavans Vivekananda College, Sainikpuri for their constant support and encouragement. We declare we do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anju, S., Aparna, Y., Bhima, B., Sarada, J. (2018). Novel Insights on the Bacillus Quorum Sensing Mechanism: Its Role in Competence, Virulence, Sporulation and Biofilm Formation. In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_21

Download citation

Publish with us

Policies and ethics