Skip to main content

Quorum Sensing and Biofilm Disassembly Process in Pseudomonas aeruginosa, Staphylococcus aureus and Xanthomonas campestris

  • Chapter
  • First Online:
Implication of Quorum Sensing System in Biofilm Formation and Virulence
  • 1061 Accesses

Abstract

Quorum sensing (QS) is a cooperative activity among bacterial cells that is mediated by extracellular cell signaling biomolecules and regulates multiple social traits like biofilm. Similar to QS, biofilm formation is also a cooperative activity among bacterial cell population that leads to formation of extracellular matrix in which bacterial cells are living embedded. Multiple findings intuitively indicate that QS may regulate biofilm formation when cell density of bacterial populations reaches at threshold levels.

However, a group of studies provide convincing evidences that QS initiates in established biofilm and leads to maturation and dispersion of biofilm. This chapter will explain the emerging concepts that QS regulates biofilm disassembly process using three pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Xanthomonas campestris) as example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novick, R. P., & Geisinger, E. (2008). Quorum sensing in staphylococci. Annual Review of Genetics, 42, 541–564. https://doi.org/10.1146/annurev.genet.42.110807.091640.

    Article  CAS  PubMed  Google Scholar 

  2. Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222. https://doi.org/10.1146/annurev-genet-102108-134304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2. https://doi.org/10.1101/cshperspect.a012427.

    Article  Google Scholar 

  4. Costerton, J. W., et al. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464. https://doi.org/10.1146/annurev.mi.41.100187.002251.

    Article  CAS  PubMed  Google Scholar 

  5. Williams, P., & Camara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12, 182–191. https://doi.org/10.1016/j.mib.2009.01.005.

    Article  CAS  PubMed  Google Scholar 

  6. Davies, D. G., et al. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.

    Article  CAS  Google Scholar 

  7. Shrout, J. D., et al. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62, 1264–1277. https://doi.org/10.1111/j.1365-2958.2006.05421.x.

    Article  CAS  Google Scholar 

  8. Allesen-Holm, M., et al. (2006). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 59, 1114–1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x.

    Article  CAS  PubMed  Google Scholar 

  9. Sakuragi, Y., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189, 5383–5386. https://doi.org/10.1128/JB.00137-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ueda, A., & Wood, T. K. (2009). Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathogens, 5, e1000483. https://doi.org/10.1371/journal.ppat.1000483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diggle, S. P., et al. (2003). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molecular Microbiology, 50, 29–43.

    Article  CAS  Google Scholar 

  12. Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185, 1027–1036.

    Article  CAS  Google Scholar 

  13. Lequette, Y., & Greenberg, E. P. (2005). Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 187, 37–44. https://doi.org/10.1128/JB.187.1.37-44.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pamp, S. J., & Tolker-Nielsen, T. (2007). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 189, 2531–2539. https://doi.org/10.1128/JB.01515-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boles, B. R., Thoendel, M., & Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57, 1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x.

    Article  CAS  PubMed  Google Scholar 

  16. Irie, Y., O’Toole, G. A., & Yuk, M. H. (2005). Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiology Letters, 250, 237–243. https://doi.org/10.1016/j.femsle.2005.07.012.

    Article  CAS  PubMed  Google Scholar 

  17. Singh, N., Pemmaraju, S. C., Pruthi, P. A., Cameotra, S. S., & Pruthi, V. (2013). Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Applied Biochemistry and Biotechnology, 169, 2374–2391. https://doi.org/10.1007/s12010-013-0149-7.

    Article  CAS  PubMed  Google Scholar 

  18. Jensen, P. O., et al. (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153, 1329–1338. https://doi.org/10.1099/mic.0.2006/003863-0.

    Article  CAS  PubMed  Google Scholar 

  19. Vuong, C., Saenz, H. L., Gotz, F., & Otto, M. (2000). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. The Journal of Infectious Diseases, 182, 1688–1693. https://doi.org/10.1086/317606.

    Article  CAS  PubMed  Google Scholar 

  20. Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens, 4, e1000052. https://doi.org/10.1371/journal.ppat.1000052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Queck, S. Y., et al. (2008). RNAIII-independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus. Molecular Cell, 32, 150–158. https://doi.org/10.1016/j.molcel.2008.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dunman, P. M., et al. (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. Journal of Bacteriology, 183, 7341–7353. https://doi.org/10.1128/JB.183.24.7341-7353.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vergara-Irigaray, M., et al. (2009). Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infection and Immunity, 77, 3978–3991. https://doi.org/10.1128/IAI.00616-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Neill, E., et al. (2008). A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. Journal of Bacteriology, 190, 3835–3850. https://doi.org/10.1128/JB.00167-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merino, N., et al. (2009). Protein A-mediated multicellular behavior in Staphylococcus aureus. Journal of Bacteriology, 191, 832–843. https://doi.org/10.1128/JB.01222-08.

    Article  CAS  PubMed  Google Scholar 

  26. Shanks, R. M., et al. (2008). Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infection and Immunity, 76, 2469–2477. https://doi.org/10.1128/IAI.01370-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz, K., Syed, A. K., Stephenson, R. E., Rickard, A. H., & Boles, B. R. (2012). Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathogens, 8, e1002744. https://doi.org/10.1371/journal.ppat.1002744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, D., Zhao, L., Xue, T., & Sun, B. (2012). Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiology, 12, 288. https://doi.org/10.1186/1471-2180-12-288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, L. H., et al. (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Molecular Microbiology, 51, 903–912.

    Article  CAS  Google Scholar 

  30. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J., & Dow, J. M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 38, 986–1003.

    Article  CAS  Google Scholar 

  31. He, Y. W., et al. (2006). Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. The Journal of Biological Chemistry, 281, 33414–33421. https://doi.org/10.1074/jbc.M606571200.

    Article  CAS  PubMed  Google Scholar 

  32. He, Y. W., et al. (2006). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Molecular Microbiology, 59, 610–622. https://doi.org/10.1111/j.1365-2958.2005.04961.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tao, F., Swarup, S., & Zhang, L. H. (2010). Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environmental Microbiology, 12, 3159–3170. https://doi.org/10.1111/j.1462-2920.2010.02288.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K. (2018). Quorum Sensing and Biofilm Disassembly Process in Pseudomonas aeruginosa, Staphylococcus aureus and Xanthomonas campestris . In: Pallaval Veera Bramhachari (eds) Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_19

Download citation

Publish with us

Policies and ethics