Skip to main content

Soil Remediation Through Microbes

  • Chapter
  • First Online:

Abstract

The use of microbes including bacteria and fungi for treatment of polluted soils is also a method of soil remediation. Microbes are adapted to survive under various unfavorable conditions, such as high temperature, alkalinity, and acidity, and can easily develop biological resistance against the toxic substances because of their jumping genes. Under favorable conditions of growth and adequate supply of the nutrients, the microbes can biotransform or biodegrade complex organic materials into harmless or less toxic smaller molecules. With the addition of micronutrients into the microbial consortia the degradation rate of pollutants can be enhanced as the added nutrients stimulate soil microbes which eventually expedite the rate of biodegradation. Mycoremediation is fungal-mediated bioremediation of polluted soils containing organic and inorganic pollutants. Fungal mycelia can spread similarly as that of plant roots and accumulate heavy metals in their cytosol. Environmentalists regard microorganisms as ‘eco-friendly nano-factories’ for treating the polluted soils. However, natural pollutants can be degraded by the naturally occurring microbes while for degradation of manmade chemicals or pollutants, genetically transformed microbes should be developed for efficient soil remediation. Microbe-mediated remediation can take place via three methods i.e. bioventing, bioleaching, bioaugmentation. In the last few years, several reports covering the success stories of microbe-mediated soil remediation have come up.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. Springer, New York, pp 1−30

    Article  CAS  PubMed  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262

    Article  CAS  Google Scholar 

  • Achakzai AKK, Liasu MO, Popoola OJ (2012) Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil. Pak J Bot 44(1):221–230

    CAS  Google Scholar 

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37:1601–1605

    Article  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SF, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention, a review. Int J Environ Bioremed Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  PubMed  Google Scholar 

  • Ahmady-Asbchin S, Safari M, Tabaraki R (2015) Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin Water Treat 54:3372–3379

    Article  CAS  Google Scholar 

  • Akintunde TA, Abioye OP, Oyeleke SB, Boboye BE, Ijah UJJ (2015) Remediation of iron using rhamnolipid-surfactant produced by Pseudomonas aeruginosa. Res J Environ Sci 9:169–177

    Article  CAS  Google Scholar 

  • Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malay J Microbiol 8:135–140

    Google Scholar 

  • Amund OO, Nwokoye N (1993) Hydrocarbon potentials of yeast isolates from a polluted Lagoon. J Sci Res Dev 1:65–68

    Google Scholar 

  • Andrade SA, Gratão PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370

    Article  CAS  PubMed  Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6(6):389–394

    Article  CAS  Google Scholar 

  • Arbanah M, Miradatul Najwa MR, Ku Halim KH (2012) Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind 1:152–162

    CAS  Google Scholar 

  • Arbanah M, Miradatul Najwa MR, Ku Halim KH (2013) Utilization of Pleurotus ostreatus in the removal of Cr (VI) from chemical laboratory waste. Int Refreed J Eng Sci 2(4):29–39

    Google Scholar 

  • Arvay J, Tomas J, Hauptvogl M, Kovacik A, Bajcan D, Massanyi P (2014) Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J Environ Sci Health B 49:815–827

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbial Biotechnol 32(11):180

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  • Banerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloaca and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226:1–9

    Article  CAS  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106

    Article  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Veglio F (2006) Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water Res 40:144–152

    Article  CAS  PubMed  Google Scholar 

  • Bestawy EE, Helmy S, Hussien H, Fahmy M, Amer R (2010) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192

    Article  CAS  Google Scholar 

  • Bheemareddy VS, Lakshman HC (2011) Effect of salt and acid stress on Triticum aestivum inoculated with Glomus fasciculatum. Int J Agric Technol 7:945–956

    Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley PM (2003) History and ecology of chloroethene biodegradation: a review. Bioremed J 7(2):81–109

    Article  CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79(3):473–495

    Article  PubMed  Google Scholar 

  • Cabuk A, Akar T, Tunali S, Tabak O (2006) Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb. J Hazard Mater 136:317–323

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184(17):4672–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiglione MR, Giorgetti L, Becarelli S, Siracusa G, Lorenzi R, Di Gregorio S (2016) Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ Sci Pollut Res 23:7930–7941

    Article  CAS  Google Scholar 

  • Cayır A, Coskun M, Coskun M (2010) The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134:212–219

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008a) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008b) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chen F, Tan M, Ma J, Zhang S, Li G, Qu J (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu X, Zhang X, Cao L, Hu X (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326

    Article  CAS  PubMed  Google Scholar 

  • Chi XQ, Zhang JJ, Zhao S, Zhou NY (2013) Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environ Poll 172:33–41

    Article  CAS  Google Scholar 

  • Chibuike GU (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8(35):679–1687

    Article  CAS  Google Scholar 

  • Choi SB, Yun YS (2004) Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol Lett 26:331–336

    Article  CAS  PubMed  Google Scholar 

  • Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5(4):423–445

    Article  CAS  Google Scholar 

  • Cullen WR (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78

    Article  CAS  Google Scholar 

  • Cycoń M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71

    Article  PubMed  CAS  Google Scholar 

  • Da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 8(8):69386

    Article  CAS  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chem 68(5):864–870

    CAS  Google Scholar 

  • Das N, Charumathi D, Vimala R (2007) Effect of pretreatment on Cd2+ biosorption by mycelia biomass of Pleurotus florida. Afr J Biotechnol 6:2555–2558

    Article  CAS  Google Scholar 

  • de Almeida LK, Burgess JE (2013) Biosorption and bioaccumulation of copper and lead by Phanerochaete and Pleurotus ostreatus

    Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Demirbas A (2001) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301

    Article  CAS  Google Scholar 

  • Demirbas A (2002) Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem 78:89–93

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dogan HH, Sanda MA, Uyanoz R, Ozturk C, Cetin U (2006) Contents of metals in some wild mushrooms: its impact in human health. Biol Trace Elem Res 110:79–94

    Article  CAS  PubMed  Google Scholar 

  • Downey D, Miller R, Dragoo T (2004) Procedures for conducting bioventing pilot tests and long-term monitoring of bioventing systems. Parsons Denver Co, Denver

    Book  Google Scholar 

  • Dulay RMR, De Castro MAEG, Coloma NB, Bernardo AP, Cruz AGD, Tiniola RC, Kalaw SP, Reyes RG (2015) Effects and myco-remediation of lead (Pb) in five Pleurotus mushrooms. Int J Biol Pharm Allied Sci 4(3):1664–1677

    CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemos 64(3):408–414

    Article  CAS  Google Scholar 

  • Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chemical Engineering

    Google Scholar 

  • Falandysz J, Brzostowski A, Kawano M, Kannan K, Puzyn T, Lipka K (2003) Concentrations of mercury in wild growing higher fungi and underlying substrate near lake Wdzydze. Poland Water Air Soil Pollut 148:127–137

    Article  CAS  Google Scholar 

  • Falandysz J, Kojta AK, Jarzy´nska G, Drewnowska M, Dry-za lowska A, Wydma´nska D, Kowalewska I, Wacko A, Szlosowska M, Kannan K, Szefer P (2012) Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit Contam 29:951–961

    Article  CAS  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308

    Article  CAS  PubMed  Google Scholar 

  • Favero N, Bressa G, Costa P (1990a) Response of Pleurotus ostreatus to cadmium exposure. Ecotoxicol Environ Safe 20(1):1–6

    Article  CAS  Google Scholar 

  • Favero N, Costa P, Paolo Rocco G (1990b) Role of copper in cadmium metabolism in the basidiomycetes Pleurotus ostreatus. Comp Biochem Physiol Part C Comp Pharmacol 97(2):297–303

    Article  Google Scholar 

  • Floodgate G (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillion, New York, pp 355–398

    Google Scholar 

  • Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Micobiol Biotechnol 15:93–120

    Article  CAS  Google Scholar 

  • Fu H, Cwiertny DM, Carmichael GR, Scherer MM, Grassian VH (2010) Photoreductive dissolution of Fe-containing mineral dust particles in acidic media. J Geophys Res Atmos 115(D11)

    Google Scholar 

  • Gabriel J, Svec K, Kolihova D, Tlustos P, Szakova J (2016) Translocation of mercury from substrate to fruit bodies of Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata on oat flakes. Ecotoxicol Environ Safe 125:184–189

    Article  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  PubMed  Google Scholar 

  • Garcıa MA, Alonso J, Melgar MJ (2009) Lead in edible mushrooms: levels and bioaccumulation factors. J Hazard Mater 167:777–783

    Article  PubMed  CAS  Google Scholar 

  • Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F (2004) Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862

    Article  CAS  PubMed  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hellekson D (1999) Bioventing principles, applications and potential. Restor Reclam Rev 5(2):1–9

    Google Scholar 

  • Herndon RC, Moerlins JE, Kuperberg JM, Richter PI, Biczó IL (2013) Clean-up of former soviet military installations: identification and selection of environmental technologies for use in central and eastern Europe (Vol. 1). Springer

    Google Scholar 

  • Hollaway SL, Faw GM, Sizemore RK (1980) The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Mar Poll Bull 11(6):153–156

    Article  Google Scholar 

  • Hong Q, Zhang ZH, Hong YF, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59(1):55–61

    Article  CAS  Google Scholar 

  • Incharoensakdi A, Kitjaharn P (2002) Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Curr Microbiol 45(4):261–264

    Article  CAS  PubMed  Google Scholar 

  • Isaac P, Bourguignon N, Maizel D, Ferrero MA (2016) Indigenous PAH-degrading bacteria in oil-polluted marine sediments from Patagonia: diversity and biotechnological properties. In: Biology and biotechnology of Patagonian microorganisms. Springer, Cham, pp 31–42

    Chapter  Google Scholar 

  • Ita BN, Essien JP, Ebong GA (2006) Heavy metal levels in fruiting bodies of edible and non-edible mushrooms from the Niger delta region of Nigeria. J Agric Soc Sci 2:84–87

    Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7(5):885–895

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60(8):3030–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiol 37:53–61

    Article  CAS  Google Scholar 

  • Javaid A, Bajwa R (2007) Biosorption of Cr(III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia 5:71–79

    Google Scholar 

  • Javaid A, Bajwa R (2008) Biosorption of electroplating heavy metals by some basiodiomycetes. Mycopathologia 6:1–6

    Google Scholar 

  • Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 35:1675–1682

    Article  CAS  Google Scholar 

  • Jernberg C, Jansson JK (2002) Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 42(3):387–397

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju protein: a potential biosorptive agent. Adv Bio Tech 11:25–27

    Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremed 16:321–333

    Article  CAS  Google Scholar 

  • Jones J, Knight M, Byron JA (1970) Effect of gross population by kerosene hydrocarbons on the microflora of a moorland soil. Nature 227:1166

    Article  CAS  PubMed  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. App Environ Microbiol 64(7):2479–2484

    CAS  Google Scholar 

  • Kaksonen AH, Lavonen L, Kuusenaho MK, Kolli A, Närhi HM, Vestola EA, Puhakka JA, Tuovinen OH (2011) Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Miner Eng 24:1113–1121

    Article  CAS  Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  CAS  Google Scholar 

  • Khan AR, Ullah I, Khan AL, Park G, Waqas MS, Hong BK, Jung Y, Kwak Y, Lee I, Shin J (2015) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp RSC-14 inoculation. Environ Sci Pollut Res 22:14032–11404

    Article  CAS  Google Scholar 

  • Konuk M, Afyon A, Yagız D (2007) Minor element and heavy metal contents of wild growing and edible mushrooms from Western Black Sea region of Turkey. Fresen Environ Bull 16:1359–1362

    CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kuforiji OO, Fasidi IO (2008) Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresource Technol 99:4275–4278

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators: soil biology. Springer, Berlin/Heidelberg, pp 77–116

    Chapter  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:1–7

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Progr 28:1507–1516

    Article  CAS  Google Scholar 

  • Kumhomkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull Environ. Contam Toxicol 91:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179

    Article  CAS  PubMed  Google Scholar 

  • Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39(9):3330–3337

    Article  CAS  PubMed  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81(4):355–362

    CAS  PubMed  Google Scholar 

  • Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195

    Google Scholar 

  • Leahy JH, Colwell R (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640

    Article  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedumal fredii. J Exp Bot 58:4173–4182

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang X, Weng L, Zhou Q, Li Y (2016) Microbial fuel cell for organic contaminated soil remedial application. A Rev Energy Technol 5:1156–1164

    Article  CAS  Google Scholar 

  • Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR (2014) Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere 24:322–329

    Article  CAS  Google Scholar 

  • Liew HH, Tay CC, Yong SK, Surif S, Abdul Talib S (2010) Biosorption characteristics of lead [Pb(II)] by Pleurotus ostreatus biomass. In: Abstracts of the proceedings of international conference on science and social research (CSSR), Kuala Lumpur

    Google Scholar 

  • Lin Z, Zhao L, Dong Y (2015) Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere 141:7–12

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201

    Article  CAS  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang Q, Wang B, Hou J, Luo Y, Tang C, Franks AE (2015) Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soil Sediment 15(5):1191–1199

    Article  CAS  Google Scholar 

  • Long XX, Chen XM, Wong JWC, Wei ZB, Wu QT (2013) Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. Trans Nonferrous Metals Soc China 23:2389–2396

    Article  CAS  Google Scholar 

  • Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34:359–365

    CAS  PubMed  Google Scholar 

  • Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73(14):4477–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009a) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009c) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC 6b. Chemosphere 93:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • MacRae JD, Lavine IN, McCaffery KA, Ricupero K (2007) Isolation and characterization of NP4, an arsenate-reducing Sulfurospirillum from groundwater in Northport. Mar J Environ Eng 131:81–88

    Article  CAS  Google Scholar 

  • Mai C, Schormann W, Majcherczyk A, Huttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65:479–487

    Article  CAS  PubMed  Google Scholar 

  • Malekzadeh E, Alikhani HA, Savaghebi-Firoozabadi GR, Zarei M (2012) Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth-promoting rhizobacteria. Bioremed J 16:204–211

    Article  CAS  Google Scholar 

  • Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33:1347–1354

    Article  CAS  Google Scholar 

  • Mandal TK, Baldrian P, Gabriel J, Nerud F, Zadrazil F (1998) Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere 36(3):435–440

    Article  CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biosynthesis of dimethylasrine by a methanobacterium. Biochem 10:4312–4317

    Article  CAS  Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of solublemethane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Let 255(2):225–232

    Article  CAS  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    Article  CAS  PubMed  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mire CE, Jeanette AT, William FO, Kandalam VR, Gregory BH (2004) Lead precipitation by Vibrio harveyi: evidence for novel Quorum-sensing interactions. Appl Environ Microbiol 70:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Ind J Exp Biol 47(9):760–765

    Google Scholar 

  • Nagy B, Măicăneanu A, Indolean C, Mânzatu C, MC S-D (2013) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E 45(3):921–929

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Ock Joo J, Choi JH, Kim IH, Kim YK, Oh BK (2015) Effective bioremediation of cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans. Biotechnol Bioprocess Eng 20:937–941

    Article  CAS  Google Scholar 

  • Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2011) Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill-cuttings. Afr J Biotechnol 10(26):5149–5156

    CAS  Google Scholar 

  • Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus Pulmonarius and Glomus Mosseae using Amaranthus Hybridus as a test plant. J Bioremed Biodegrad 1:111

    Google Scholar 

  • Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 2:293–297

    Google Scholar 

  • Peng G, Tian G, Liu J, Bao Q, Zang L (2011) Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalin 271:100–104

    Article  CAS  Google Scholar 

  • Pham TTH, Brar SK, Tyagi RD, Surampalli RY (2010) Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. Ultrason Sonochem 17:38–45

    Article  CAS  PubMed  Google Scholar 

  • Phillips GJM, Stewart JE (1974) Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Can J Microbiol 20(7):955–962

    Article  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, DC, pp 139–236

    Chapter  Google Scholar 

  • Pinholt Y, Struwe S, Kjoller A (1979) Microbial changes during oil decomposition in soil. Holarctic Ecol 2:195–200

    CAS  Google Scholar 

  • Płociniczak T, Sinkkonen A, Romantschuk M, Piotrowska-Seget Z (2013) Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl Soil Ecol 63:1–7

    Article  Google Scholar 

  • Potysz A, Lens PNL, van de Vossenberg J, Rene ER, Grybos M, Guibaud G, Kierczak J, van Hullebusch ED (2016) Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Appl Geochem 68:39–52

    Article  CAS  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666

    Article  CAS  PubMed  Google Scholar 

  • Prasad ASA, Varatharaju G, Anushri C, Dhivyasree S (2013) Biosorption of lead by Pleurotus florida and Trichoderma viride. Br Biotechnol J 3(1):66–78

    Article  CAS  Google Scholar 

  • Puentes-Cárdenas IJ, Pedroza-Rodríguez AM, Navarrete-López M, Villegas-Garrido TL, Cristiani-Urbina E (2012) Biosorption of trivalent chromium from aqueous solutions by Pleurotus ostreatus biomass. Environ Eng Manag J 11(10):1741–1752

    Article  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1):465–474

    Article  CAS  PubMed  Google Scholar 

  • Quarcoo A, Adotey G (2013) Determination of heavy metals in Pleurotus ostreatus (oyster mushroom) and Termitomyces clypeatus (termite mushroom) sold on selected markets in Accra. Ghana. Mycosphere 4:960–967

    Article  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2013) Characterization of metal-resistant plant growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:1–9

    Google Scholar 

  • Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhatisgrah. J Exp Sci 2:69–72

    CAS  Google Scholar 

  • Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of Pseudomonas putida 710A and Commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928

    Article  CAS  Google Scholar 

  • Rashidi A, Safdari J, Roosta-Azad R, Zokaei-Kadijani S (2012) Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans. Annal Nucl Energy 43:13–18

    Article  CAS  Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983

    Article  CAS  PubMed  Google Scholar 

  • Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Rezza I, Salinas E, Elorza M, de Tosetti MS, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36(6):495–500

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  PubMed  Google Scholar 

  • Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG (2013) Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Braz J Microbiol 44(2):523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Hens D, Biswas D, Biswas D, Kumar R (2002) Survey of petroleum degrading bacteria in coastal waters of Sunderban Biosphere Reserve. World J Microbiol Biotechnol 18(6):575–581

    Article  CAS  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139

    Article  CAS  PubMed  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  PubMed  Google Scholar 

  • Salleh AB, Ghazali FM, Rahman RNZA, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2:411–425

    CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savvaidis I, Hughes MN, Poole RK (2003) Copper bio sorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol 19:117–121

    Article  CAS  Google Scholar 

  • Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black Sea region Turkey. J Hazard Mater 160:462–467

    Article  CAS  PubMed  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharma Life Sci 2(2):202–213

    Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Silva IS, Grossman M, Durranta LR (2009a) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very low- oxygen conditions by soil fungi. Int Biodeterior Biodegrad 63(2):224–229

    Article  CAS  Google Scholar 

  • Silva IS, Santos EC, Menezes CR, Faria AF, Franciscon E, Grossman M, Durrant LR (2009b) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Biores Technol 100(20):4669–4675

    Article  CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57(3):812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Anim Environ Sci 3:193–203

    CAS  Google Scholar 

  • Tabaraki R, Ahmady-Asbchin S, Abdi O (2013) Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. J Environ Chem Eng 1:604–608

    Article  CAS  Google Scholar 

  • Tay CC, Liew HH, Yong SK, Surif S, Abdul-Talib S (2009) Biosorption of lead(II) from aqueous solutions by Pleurotus as a toxicity biosorbent. In: Environmental science and technology conference (ESTEC), Kuala Terengganu Malaysia

    Google Scholar 

  • Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of Cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 28:825–830

    Article  CAS  Google Scholar 

  • Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ Technol 33:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211

    Article  CAS  Google Scholar 

  • Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810

    Article  CAS  Google Scholar 

  • Uddin MJ, Aditya Sagar G, Jagdeeshwar J (2017) Soil pollution and soil remediation techniques. Int J Adv Res, Ideas Innov Technol 3(1):582–593

    Google Scholar 

  • Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater 135:87–93

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Srivastava VK (2015) Green technology and sustainable development of environment. Renew Res J 3(1):244–249

    Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124

    Article  CAS  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl Microbiol Biotechnol 97(17):7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555

    Article  PubMed Central  Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49(10):577–588

    Article  CAS  PubMed  Google Scholar 

  • Wang LM, Chi XQ, Zhang JJ, Sun DL, Zhou NY (2014) Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp. strain WBC-3. Int Biodeterior Biodegrad 87(1):116–121

    Article  CAS  Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegrad 1(2–3):79–92

    Article  CAS  Google Scholar 

  • Watling HR (2014) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5(1):1–60

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151

    Article  CAS  PubMed  Google Scholar 

  • Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006a) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72(3):1759–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Cheung K, Luo Y, Wong M (2006b) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Xu Y, Ding W, Li Y, Xu H (2016) Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol 100:7249–7261

    Article  CAS  PubMed  Google Scholar 

  • Xiangliang P, Jianlong W, Daoyong Z (2005) Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Bio Chem 40:2799–2803

    Article  CAS  Google Scholar 

  • Xiangliang P, Jianlong W, Daoyong Z (2009) Biosorption of Co(II) by immobilised Pleurotus ostreatus. Int J Environ Pollut 37:289–298

    Article  Google Scholar 

  • Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4- chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73(1):166–171

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Feng YY (2016) Feasibility of sewage sludge leached by Aspergillus niger in land utilization. Pol J Environ Stud 25(1):405

    Article  CAS  Google Scholar 

  • Yayçinkaya Y, Arica MY, Soysal L, Bektaş S (2002) Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem 26(3):441–452

    Google Scholar 

  • Yu SH, Ke L, Wong YS, Tam NFY (2005) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2013) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  PubMed  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZH, Hong Q, Xu JH, Zhang X, Li S (2006) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Liu H, Xiao Y, Zhang XE, Zhou NY (2009) Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol 191(8):2703–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Wang W, Chen B (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedumal fredii Hance. J Hazard Mater 229–230:361–370

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Ramette A, Niu GL, Liu H, Zhou NY (2009) Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiol Ecol 70(2):315–323

    Article  CAS  Google Scholar 

  • Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72(4):797–803

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199

    Article  CAS  PubMed  Google Scholar 

  • Zhu MJ, Du F, Zhang GQ, Wang HX, Ng TB (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegrad 82:33–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, B., Taak, P. (2018). Soil Remediation Through Microbes. In: Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_6

Download citation

Publish with us

Policies and ethics