Skip to main content

Abstract

Chemical methods aim at addition of chemicals or solvents into the polluted soils so as to stabilize the pollutants and convert them into less toxic forms that are harmless to the waterbodies, plants, and human beings. Since, complete soil remediation is difficult to achieve with biological methods alone hence, the amalgamation of both biological and chemical methods has gained much attention of the scientists. Besides that, the harmful effects of the use of chemical methods should also be considered before implementing on a pilot-scale. The materials generally used for chemical treatments are metallic oxides, clays or biomaterials. Remediation efficiency of these materials depends upon the soil texture, organic matter present in the soil, type of metal contaminant etc. Furthermore, chemical methods can offer a fast remediation compared to slow bioremediation process. This chapter discusses the available chemical remediation methods such as chemical leaching, chemical oxidation, chemical fixation and electro kinetic remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bolan NS, Adriano DC, Duraisamy P, Mani A (2003) Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil 256(1):231–241

    Article  CAS  Google Scholar 

  • Dadkhah AA, Akgerman A (2002) Hot water extraction with in situ wet oxidation: PAHs removal from soil. J Hazard Mater B 93:307–320

    Article  CAS  Google Scholar 

  • Dong P, Maneerung T, Ng WC, Zhen X, Dai Y, Tong YW, Ting YP, Koh SN, Wang CH, Neoh KG (2017) Chemically treated carbon black waste and its potential applications. J Hazard Mater 321:62–72

    Article  CAS  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68(1):150–158

    Article  CAS  Google Scholar 

  • Forsey SP, Thomson NR, Forsey BJFSP, Thomson NR, Barker JF (2010) Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 79(6):628–636

    Article  CAS  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    Article  CAS  Google Scholar 

  • Haapea P, Tuhkanen T (2006) Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. J Hazard Mater 136(2):244–250

    Article  CAS  Google Scholar 

  • Hamdan SH, Molelekwa GF, Van der Bruggen B (2014) Electrokinetic remediation technique: an integrated approach to finding new strategies for restoration of saline soil and to control seawater intrusion. Chem Electro Chem 1(7):1104–1117

    CAS  Google Scholar 

  • Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39:2763–2773

    Article  CAS  Google Scholar 

  • Hassan I, Mohamedelhassan E, Yanful EK (2015) Solar powered electrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochim Acta 181:58–67

    Article  CAS  Google Scholar 

  • Huguenot D, Mousset E, van Hullebusch ED, Oturan MA (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J Environ Manag 153:40–47

    Article  CAS  Google Scholar 

  • ITRC Interstate Technology Regulatory Council (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, 2nd edn. ITRC, ISCO Team, Washington, DC

    Google Scholar 

  • Jeon EK, Ryu SR, Baek K (2015) Application of solar-cells in the electrokinetic remediation of As-contaminated soil. Electrochim Acta 181:160–166

    Article  CAS  Google Scholar 

  • Kronholm J, Kuosmanen T, Hartonen K, Riekkola ML (2003) Destruction of PAHs from soil by using pressurized hot water extraction coupled with supercritical water oxidation. Waste Manag 23:253–260

    Article  CAS  Google Scholar 

  • Kulik N, Goia A, Trapidoa M, Tuhkanenb T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manag 78:382–391

    Article  CAS  Google Scholar 

  • Kuruppathparambil RR, Babu R, Jeong HM, Hwang GY, Jeong GS, Kim MI, Kim DW, Park DW (2016) A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2. Green Chem 18(23):6349–6356

    Article  CAS  Google Scholar 

  • Lee BD, Iso M, MBD H (2001) Prediction of Fenton oxidation positions in poly-cyclic aromatic hydrocarbons by frontier electron density. Chemosphere 42(4):431–435

    Article  CAS  Google Scholar 

  • Lee M, Paik IS, Do W, Kim I, Lee Y, Lee S (2007) Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea. Environ Geochem Health 29(4):319–329

    Article  CAS  Google Scholar 

  • Li GD, Zhang ZW, Jing P, Nannan Z, Li L, Yufei Y, Miao Y (2009) Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. Trans Chinese Soc Agric Eng 25(10):231–235

    Article  Google Scholar 

  • Li DW, Huang T, Liu KX (2016) Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes. Environ Technol 37:216–227

    Article  Google Scholar 

  • Liang YT, Nostrand JDV, Wang J (2009) Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere 75(2):193–199

    Article  CAS  Google Scholar 

  • Liao XY, Tao H, Yan XL (2014a) Discussion on several key points of decision support system for remediation of contaminated sites. Environ Sci 35(4):1576–1585

    Google Scholar 

  • Liao XY, Zhao D, Yan XL (2014b) Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater 276(9):26–34

    Article  CAS  Google Scholar 

  • Liao X, Yan X, Ma D, Zhao D, Sun L, Li Y, Tao H (2018) The research and development of technology for contaminated site remediation. In: Twenty years of research and development on soil pollution and remediation in China. Springer, Singapore, pp 785–798

    Chapter  Google Scholar 

  • López-Vizcaíno R, Yustres A, León MJ, Saez C, Cañizares P, Rodrigo MA, Navarro V (2017) Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters. Electrochim Acta 225:93–104

    Article  Google Scholar 

  • Luo Q, Zhang X, Wang H, Qian Y (2004) Mobilization of 2,4-dichlorophenol in soils by non-uniform electrokinetics. Acta Sci Circumst 24(6):1104–1109

    CAS  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28:266A–276A

    Article  CAS  Google Scholar 

  • Lv L, Jin M, Li B, Xie J (2009) Study on remediation of the soil contaminated with cadmium by applying four minerals. J Agric Univ Hebei 32(1):1–5

    Google Scholar 

  • Masten SJ, Davies SHR (1997) Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. J Contam Hydrol 28(4):327–335

    Article  CAS  Google Scholar 

  • Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA (2014a) Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process-study of soil washing recycling possibilities and environmental impact. Water Res 48:306–316

    Article  CAS  Google Scholar 

  • Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA (2014b) Treatment of synthetic soil washing solutions containing phenanthrene and cyclodextrin by electro-oxidation. Influence of anode materials on toxicity removal and biodegradability enhancement. Appl Catal B Environ 160–161:666–675

    Article  Google Scholar 

  • Mousset E, Trellu C, Oturan N, Rodrigo MA, Oturan MA (2017) Soil remediation by electro-Fenton process. In: Electro-Fenton process. Springer, Singapore, pp 399–423

    Chapter  Google Scholar 

  • Murati M, Oturan N, van Hullebusch ED, Oturan MA (2009) Electro-Fenton treatment of TNT in aqueous media in presence of cyclodextrin. Application to ex-situ treatment of contaminated soil. J Adv Oxid Technol 12:29–36

    CAS  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45(1):11–20

    Article  CAS  Google Scholar 

  • Ou-Yang X, Chen JW, Zhang XG (2010) Advance in supercritical CO2 fluid extraction of contaminants from soil. Geol B China 29(11):1655–1661

    CAS  Google Scholar 

  • Pazos M, Plaza A, Martín M, Lobo MC (2012) The impact of electrokinetic treatment on a loamy-sand soil properties. Chem Eng J 183:231–237

    Article  CAS  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation-based treatments. J Hazard Mater 138(2):234–251

    Article  CAS  Google Scholar 

  • Rosales E, Pazos M, Longo MA, Sanroman MA (2009) Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1104–1110

    Article  CAS  Google Scholar 

  • Silva A, Delerue-Matos C, Fiuza A (2005) Use of solvent extraction to remediate soils contaminated with hydrocarbons. J Hazard Mater B 124:224–229

    Article  CAS  Google Scholar 

  • Souza FL, Saéz C, Llanos J, Lanza MRV, Cañizares P, Rodrigo MA (2016) Solarpowered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochim Acta 190:371–377

    Article  CAS  Google Scholar 

  • Sun HW, Yan QS (2008) Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation. J Environ Manag 88(3):556–563

    Article  CAS  Google Scholar 

  • Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46(1):31–38

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostemaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289(113):97–121

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20

    Article  Google Scholar 

  • Xu Q, Huang XF, Cheng JJ, Lu XC (2006) Progress on electrokinetic remediation and its combined methods for POPs from contaminated soils. Environ Sci 27(11):2363–2368

    Google Scholar 

  • Xu H, Zhou R, Li W, Wang Y, Han X, Zhai X, Tian M, Zhang R, Jin Y, Shen M, Wang Y (2016) Removal of plutonium from contaminated soil by chemical leaching. Procedia Environ Sci 31:392–400

    Article  Google Scholar 

  • Yang L, Donahoe RJ, Redwine JC (2007) In situ chemical fixation of arsenic-contaminated soils: an experimental study. Sci Total Environ 387(1):28–41

    Article  CAS  Google Scholar 

  • Yu YT, Tian GM, He MM (2009) Comparison of two different combined bioleaching-electrokinetic remediation processes. Acta Sci Circumst 29(1):163–168

    CAS  Google Scholar 

  • Yuan SH, Zheng ZH, Chen J, Lu XH (2009) Use of solar cell in electrokinetic remediation of cadmium-contaminated soil. J Hazard Mater 162:1583–1587

    Article  CAS  Google Scholar 

  • Zhang RH, Sun HW (2007) Remediation of chromate contaminated soils by combined technology of electrokinetic and iron PRB. Environ Sci 28(5):1131–1136

    CAS  Google Scholar 

  • Zhang LJ, Zhang Y, Liu DH (2009) Remediation of soils contaminated by heavy metals with different amelioration materials. Soil 41(3):420–424

    CAS  Google Scholar 

  • Zhao D, Liao XY, Yan XL (2011a) Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site. Environ Sci 32(3):857–863

    CAS  Google Scholar 

  • Zhao D, Yan XL, Liao XY (2011b) Chemical oxidants for remediation of BTEX contaminated soils at coking sites. Environ Sci 32(3):849–856

    CAS  Google Scholar 

  • Zhou R, Liu X, Luo L, Zhou Y, Wei J, Chen A, Tang L, Wu H, Deng Y, Zhang F, Wang Y (2017) Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int Biodeterior Biodegrad 118:73–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, B., Taak, P. (2018). Chemical Methods of Soil Remediation. In: Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_4

Download citation

Publish with us

Policies and ethics