Skip to main content

Abstract

Ex situ techniques involves the treatment of contaminated soil, away from the polluted site. Ex situ bioremediation can be operated in two ways which include solid phase bioremediation and slurry phase bioremediation. Besides its high cost, these techniques are highly efficient, easy to control, faster and have great potential to treat large number of contaminants from the soil. Ex situ techniques involve land farming, biopile, windrow, soil washing, composting, bioreactor, ion exchange, adsorption/absorption, pyrolysis and ultrasound technology. These techniques can be successfully applied for the treatment of fuel hydrocarbons, halogenated and non-halogenated organic compounds as well as for various pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov VO, Mullakaev MS, Abramova AV, Esipov IB, Mason TJ (2013) Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implementation. Ultrason Sonochem 20:1289–1296

    Article  CAS  Google Scholar 

  • Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    Article  CAS  Google Scholar 

  • Alexandratos SD (2008) Ion-exchange resins: a retrospective from industrial and engineering. Indus Eng Chem Res 48(1):388–398

    Article  Google Scholar 

  • Arvanitoyannis IS, Kassaveti A, Stefanatos S (2007) Current and potential uses of thermally treated olive oil waste. Int J Food Sci Technol 42:852–867

    Article  CAS  Google Scholar 

  • Barr D (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London

    Google Scholar 

  • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernandez T, von Bergen M, Garcia C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteome 135:162–169

    Article  CAS  Google Scholar 

  • Beril Gonder Z, Kaya Y, Vergili I, Barlas H (2006) Capacity loss in an organically fouled anion exchanger. Desalination 189:303–307

    Article  Google Scholar 

  • Besaltatpour A, Hajabbasi M, Khoshgoftarmanesh A, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Cont Int J 20:234–248

    Article  Google Scholar 

  • Cerqueira VS, Peralba MR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeter Biodegrad 95:338–345

    Article  CAS  Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopile and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040

    Article  CAS  Google Scholar 

  • Couto MNPFS, Basto MCP, Vasconcelos MTSD (2012) Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment. Environ Sci Pollut Res 19:86–95

    Article  CAS  Google Scholar 

  • Cserhati T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1

    Google Scholar 

  • de Almeida DG, da Silva MDGC, do Nascimento Barbosa R, Silva DDSP, da Silva RO, de Souza Lima GM, de Gusmão NB, de Queiroz MDFV (2017) Biodegradation of marine fuel MF-380 by microbial consortium isolated from seawater near the petrochemical Suape Port, Brazil. Int Biodeter Biodegrad 116:73–82

    Article  Google Scholar 

  • Debela F, Thring R, Arocena J (2012) Immobilization of heavy metals by co-pyrolysis of contaminated soil with woody biomass. Water Air Soil Pollut 223:1161–1170

    Article  CAS  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54:7–18

    Article  Google Scholar 

  • Dias RL, Ruberto L, Calabro A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Article  Google Scholar 

  • Doong RA, Wu YW, Lei WG (1998) Surfactant enhanced remediation of cadmium contaminated soils. Water Sci Technol 37(8):65–71

    Article  CAS  Google Scholar 

  • Elgh-Dalgren K, Arwidsson Z, Camdzija A, Sjöberg R, Ribé V, Waara S, Allard B, von Kronhelm T, van Hees PAW (2009) Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: changes in concentration and toxicity. J Hazard Mater 172:1033–1040

    Article  CAS  Google Scholar 

  • Evankovic T, Hrenović J (2010) Surfactants in the environment. Arch Ind Hyg Toxicol 61:95–110

    Google Scholar 

  • Evans CV (2003) Removal of heavy metals and radionuclides from soils using cationic surfactant flushing. University of Wisconsin Water Resources Institute, Madison

    Google Scholar 

  • Fabbri D, Prevot AB, Zelano V, Ginepro M, Pramauro E (2008) Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. Chemosphere 71:59–65

    Article  CAS  Google Scholar 

  • Flores R, Blass G, Domínguez V (2007) Soil remediation by an advanced oxidative method assisted with ultrasonic energy. J Hazard Mater 140:399–402

    Article  CAS  Google Scholar 

  • Fountain JC, Starr RC, Middleton T, Beikirch M, Taylor C, Hodge D (1996) A controlled field test of surfactant-enhanced aquifer remediation. Groundwater 34:910–916

    Article  CAS  Google Scholar 

  • FRTR (2012) Remediation technologies screening matrix and reference guide version 4.0 – remediation technology. Federal Remediation Technologies Roundtable, Washington, DC

    Google Scholar 

  • Gadelle F, Wan JM, Tokunaga TK (2001) Removal of Uranium(VI) from contaminated sediments by surfactants. J Environ Qual 30:470–478

    Article  CAS  Google Scholar 

  • Giannis A, Gidarakos E, Skouta A (2007) Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalin 211:249–260

    Article  CAS  Google Scholar 

  • Harmer MA, Sun Q (2001) Solid acid catalysis using ion-exchange resins. Appl Catal A 221:45

    Article  CAS  Google Scholar 

  • He Z, Siripornadulsil S, Sayre RT, Tarina TJ, Weavers LK (2011) Removal of sedimentary ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere 83:1249–1254

    Article  CAS  Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag 25:345–352

    Article  CAS  Google Scholar 

  • Huguenot D, Mousset E, van Hullebusch ED, Oturan MA (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J Environ Manag 153:40–47

    Article  CAS  Google Scholar 

  • Inguanzo M, Domınguez A, Menendez J, Blanco C, Pis J (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal Appl Pyrol 63:209–222

    Article  CAS  Google Scholar 

  • Ioannou-Ttofa L, Michael-Kordatou I, Fattas SC, Eusebio A, Ribeiro B, Rusan M, Amer ARB, Zuraiqi S, Waismand M, Linder C, Wiesman Z, Gilron J, Fatta-Kassinos D (2017) Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res 114:1–13

    Article  CAS  Google Scholar 

  • Iturbe R, Flores C, Chavez C, Bautista G, Tortes LG (2004) Remediation of contaminated soil using soil washing and biopile methodologies at a field level. J Soils Sediment 4:115–122

    Article  CAS  Google Scholar 

  • Jia LQ, Ou ZQ, Ouyang ZY (2005) Ecological behavior of linear alkylbenzene sulfonate (LAS) in soil-plant systems. Pedosphere 15:216–224

    CAS  Google Scholar 

  • Kazi TG, Jamali MK, Siddiqui A, Kazi GH, Arain MB, Afridi HI (2006) An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 63:411–420

    Article  CAS  Google Scholar 

  • Khalladia R, Benhabilesa O, Bentahara F, Moulai-Mostefa N (2009) Surfactant remediation of diesel fuel polluted soil. J Hazard Mater 164:1179–1184

    Article  Google Scholar 

  • Kim SO, Kim WS, Kim KW (2005) Evaluation of electrokinetic remediation of arsenic contaminated soils. Environ Geochem Health 27:443–453

    Article  CAS  Google Scholar 

  • Kim BK, Baek K, Ko SH, Yang JW (2011) Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol 79:116–123

    Article  CAS  Google Scholar 

  • Lee M, Kang H, Do W (2005) Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Res 39:139–146

    Article  CAS  Google Scholar 

  • Lee DH, Chang HW, Kim C (2008) Mixing effect of NaCl and surfactant on the remediation of TCB contaminated soil. Geosci J 12:63–68

    Article  CAS  Google Scholar 

  • Lorenzen L, Van Deventer JSJ, Landi WM (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Min Eng 8(4–5):557–569

    Article  CAS  Google Scholar 

  • Lukić B, Panico A, Huguenot D, Fabbricino M, van Hullebusch ED, Esposito G (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ Technol Rev 6(1):94–116

    Article  Google Scholar 

  • Maila MP, Colete TE (2004) Bioremediation of petroleum hydrocarbons through land farming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3:349–360

    Article  CAS  Google Scholar 

  • Mann MJ (1999) Full-scale and pilot-scale soil washing. J Hazard Mater 66(1):119–136

    Article  CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  Google Scholar 

  • Mason TJ, Collings A, Sumel A (2004) Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason Sonochem 11:205–210

    Article  CAS  Google Scholar 

  • Mergen MRD, Jefferson B, Parsons SA, Jarvis P (2008) Magnetic ion-exchange resin treatment: impact of water type and resin use. Water Res 42:1977–1988

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85(1):145–163

    Article  CAS  Google Scholar 

  • Navarro P, Alguacil FJ (2002) Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66(1–3):101–105

    Article  CAS  Google Scholar 

  • Nguyen YT, Kieu HT, West S, Dang YT, Horn H (2017) Community structure of a sulfate-reducing consortium in lead-contaminated wastewater treatment process. World J Microbiol Biotechnol 33(1):10

    Article  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44

    Article  CAS  Google Scholar 

  • Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485

    Article  CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Paladino G, Arrigoni JP, Satti P, Morelli I, Mora V, Laos F (2016) Bioremediation of heavily hydrocarbon-contaminated drilling wastes by composting. Int J Environ Sci Technol 13(9):2227–2238

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138:24–58

    Article  CAS  Google Scholar 

  • Pham TD, Shrestha RA, Virkutyte J, Sillanpaa M (2009) Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochim Acta 54:1403–1407

    Article  CAS  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, DC, pp 139–236

    Chapter  Google Scholar 

  • Pintar A, Batista J, Levec J (2001) Catalytic denitrification: direct and indirect removal of nitrates from potable water. Catal Today 66:503–510

    Article  CAS  Google Scholar 

  • Prokop G, Schamann M, Edelgaard I (2000) Management of contaminated sites in Western Europe. European Environment Agency, Copenhagen

    Google Scholar 

  • Rahman PKSM, Gakpe E (2008) Production, characterisation and applications of biosurfactants-review. Biotechnology 7:360–370

    Article  CAS  Google Scholar 

  • Rahman SF, Kantor RS, Huddy R, Thomas BC, van Zyl AW, Harrison ST, Banfield JF (2017) Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings. Microbiol Open 6(3):1–9

    Article  CAS  Google Scholar 

  • Rajaković LV (1992) The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Sep Sci Technol 27(11):1423–1433

    Article  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu HI, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP (2005) Pilot-Scale demonstration of surfactant-enhanced pce solubilization at the bachman road site. 2. system operation and evaluation. Environ Sci Technol 39:1791–1801

    Article  CAS  Google Scholar 

  • Ranjan RS, Qian Y, Krishnapillai M (2006) Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [ctab] on the hydrocarbon removal and retention from contaminated soils. Environ Technol 27:767–776

    Article  Google Scholar 

  • Rengaraj S, Joo CY, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102:257–275

    Article  CAS  Google Scholar 

  • Renshaw CE, Zynda GD, Fountain JC (1997) Permeability reductions induced by sorption of surfactant. Water Resour Res 33:371–378

    Article  CAS  Google Scholar 

  • Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Factories 7(5):1–16

    Google Scholar 

  • Rodrıguez-Rodrıguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101:2259–2266

    Article  Google Scholar 

  • Rofiqul Islam M, Haniu H, Rafiqul Alam Beg M (2008) Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 87:3112–3122

    Article  CAS  Google Scholar 

  • Rosas JM, Vicente F, Santos A, Romero A (2011) Enhancing p-cresol extraction from soil. Chemosphere 84:260–264

    Article  CAS  Google Scholar 

  • Salati S, Papa G, Adani F (2011) Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnol Adv 29:913–922

    Article  CAS  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173

    Article  Google Scholar 

  • Santonicola MG, Lenhoff AM, Kaler EW (2008) Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J 94:3647–3658

    Article  CAS  Google Scholar 

  • Shiau BJB, Brammer JM, Sabatini DA, Harwell JH, Knox RC (2003) Recent development of low concentration surfactant flushing for napl-impacted site remediation and pollution prevention, petroleum hydrocarbons and organic chemicals in ground water/prevention, assessment, and remediation twentieth annual conference and exposition, Costa Mesa, CA

    Google Scholar 

  • Silva-Castro GA, Uad I, Gonzalez-Lopez J, Fandino CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Techn Environ Policy 14:719–726

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Rodrıguez-Calvo A, Gonzalez-Lopez J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land- farming treatments. Environ Res 137:49–58

    Article  CAS  Google Scholar 

  • Slizovskiy IB, Kelsey JW, Hatzinger PB (2011) Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms. Environ Toxicol Chem 30:112–123

    Article  CAS  Google Scholar 

  • Srinivasan R, Sorial GA (2009) Treatment of perchlorate in drinking water: a critical review. Sep Purif Technol 69:7–21

    Article  CAS  Google Scholar 

  • Stals M, Carleer R, Reggers G, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: characterisation of biomass, pyrolysis oil and char/ash fraction. J Anal Appl Pyrol 89:22–29

    Article  CAS  Google Scholar 

  • Strbak L (2000) In situ flushing with surfactants and cosolvents. U.S. Environmental Protection Agency, Washington, DC, report

    Google Scholar 

  • Su L, Zhou H, Guo G, Zhao A, Zhao Y (2012) Anaerobic biodegradation of PAH in river sediment treated with different additives. Procedia Environ Sci 16:311–319

    Article  CAS  Google Scholar 

  • Svab M, Kubal M, Müllerova M, Raschman R (2009) Soil flushing by surfactant solution: pilot-scale demonstration of complete technology. J Hazard Mater 163:410–417

    Article  CAS  Google Scholar 

  • Swarnkar V, Agrawal N, Tomar R (2012) Sorption of chromate and arsenate by surfactant modified erionite (E-SMZ). J Dispers Sci Technol 33:919–927

    Article  CAS  Google Scholar 

  • Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Onalaja OJ, Ogunjimi D, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    Article  CAS  Google Scholar 

  • Thangavadivel K (2010) Development and application of ultrasound technology for treatment of organic pollutants. PhD thesis, University of South Australia, Adelaide SA

    Google Scholar 

  • Thuan NT, Chang MB (2012) Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis. J Hazard Mater 229–230:411–418

    Article  Google Scholar 

  • Torres LG, Lopez RB, Beltran M (2012) Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys Chem Earth 37–39:30

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2005) Cost and performance report for LNAPL characterization and remediation. U.S. Environmental Protectoin Agency, Washington, DC

    Google Scholar 

  • Uddin MJ, Aditya Sagar G, Jagdeeshwar J (2017) Soil pollution and soil remediation techniques. IJARIIT 3(1):582–593

    Google Scholar 

  • US EPA (2012) About remediation technologies. US EPA office of superfund remediation and technology innovation (CLU-IN), Washington, DC

    Google Scholar 

  • Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4(2):178–208

    Article  CAS  Google Scholar 

  • Vilensky MY, Berkowitz B, Warshawsky A (2002) In situ remediation of groundwater contaminated by heavy and transition metal ions by ion exchange methods. Environ Sci Technol 36:1851–1855

    Article  CAS  Google Scholar 

  • Volpe A, DArpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF (2012) Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollut 223:1773–1782

    Article  CAS  Google Scholar 

  • Vreysen S, Maes A (2005) Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions. J Soils Sed 5:240–244

    Article  CAS  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  Google Scholar 

  • Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL (2011) Remediation of PAH-contaminated soils and sediments: a literature review. CSES Department, internal research document 102

    Google Scholar 

  • Willms C, Li Z, Allen L, Evans CV (2004) Desorption of cesium from kaolinite and illite using alkylammonium salts. Appl Clay Sci 25:125–133

    Article  CAS  Google Scholar 

  • Woodberry P, Stevens G, Northcott K, Snape I, Stark S (2007) Field trial of ion-exchange resin columns for removal of metal contaminants, Thala valley tip, Casey station, Antarctica. Cold Reg Sci Technol 48:105–117

    Article  Google Scholar 

  • Xu J, Yuan X, Dai S (2006) Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere 62:1630–1635

    Article  CAS  Google Scholar 

  • Zhang W, Tsang DC, Lo IM (2007) Removal of Pb and MDF from contaminated soils by EDTA-and SDS-enhanced washing. Chemosphere 66(11):2025–2034

    Article  CAS  Google Scholar 

  • Zhang LJ, Zhang Y, Liu DH (2009) Remediation of soils contaminated by heavy metals with different amelioration materials. Soil 41(3):420–424

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, B., Taak, P. (2018). Ex situ Soil Remediation Strategies. In: Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_2

Download citation

Publish with us

Policies and ethics