Skip to main content

Synthesis and Characterization of Oxide Dispersion Strengthened W-based Nanocomposite

  • Chapter
  • First Online:
Futuristic Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 841 Accesses

Abstract

The chapter involves fabrication and characterization of novel oxide dispersion strengthened (ODS) tungsten (W)-based nanocomposites used for kinetic energy penetrator (KEP) for defense and plasma facing materials (PCM) for nuclear reactor application. The chapter will discuss the benefits and challenges for using W-based alloys for high-temperature structural application. Synthesis of oxide-dispersed W-based nanocomposite (79W–10Mo–10Ni–1Y2O3) by mechanical alloying followed by consolidation through conventional pressureless sintering and advanced spark plasma sintering is carried out. The phase evolution, microstructure for milled powder, and sintered product have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The densification, hardness, and strengthening behavior of the alloy in two sintering mode are illustrated. The microstructure–mechanical properties are correlated to understand the operative densification and strengthening mechanism. Heterogeneous composition and bimodal grain size distribution of the alloy offers appreciable strength–ductility for structural applications. The chapter will provide a roadmap for design of novel alloys for similar applications.

The original version of this chapter was revised: The reference sequence has been corrected. The correction to this chapter is available at https://doi.org/10.1007/978-981-13-2417-8_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 11 December 2018

    Correction to: Chapter “Synthesis and Characterization of Oxide Dispersion Strengthened W-based Nanocomposite” in: S. S. Sidhu et al. (eds.), Futuristic Composites, Materials Horizons: From Nature to Nanomaterials, https://doi.org/10.1007/978-981-13-2417-8_13

References

  1. Lassner E, Schubert WD (1999) Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic/Plenum Publishers, New York, pp 255–268

    Google Scholar 

  2. Johnson JL (2010) Sintering of refractory metals. In: Fang ZZ (ed) Sintering of advanced materials-fundamentals and processes. Woodhead Publishing, Cambridge (UK), pp 357–380

    Google Scholar 

  3. Norajitra P, Boccaccini LV, Gervash A, Giniyatulin R, Holstein N, Ihli T, Janeschitz G, Krauss W, Kruessmann R, Kuznetsov V, Makhankov A, Mazul I, Moeslang A, Ovchinnikov I, Rieth M, Zeep B (2007) Development of a helium-cooled divertor: material choice and technological studies. J Nucl Mater 367:1416–1421

    Article  Google Scholar 

  4. Nicolas G (1990) Heavy tungsten–nickel–iron alloys with very high mechanical characteristics. US patent no. 4,960,563, Cime Bocuze, Courbevoie, FRX, 2 Oct 1990

    Google Scholar 

  5. Wang M, Li R, Yuan T, Chen C, Zhang M, Weng Q, Yuan J (2018) Selective laser melting of W-Ni-Cu composite powder: densification, microstructure evolution and nano-crystalline formation. Int J Refract Met Hard Mater 70:9–18

    Article  CAS  Google Scholar 

  6. Patra A, Meraj Md, Pal S, Yedla N, Karak SK (2016) Experimental and atomistic simulation based study of W based alloys synthesized by mechanical alloying. Int J Refract Met Hard Mater 58:57–67

    Article  CAS  Google Scholar 

  7. Telu S, Patra A, Sankaranarayana M, Mitra R, Pabi SK (2013) Microstructure and cyclic oxidation behavior of W-Cr alloys prepared by sintering of mechanically alloyed nanocrystalline powders. Int J Refract Met Hard Mater 36:195

    Article  Google Scholar 

  8. Telu S, Mitra R, Pabi SK (2013) High temperature oxidation behavior of W-Cr–Nb alloys in the temperature range of 800–1200 °C. Int J Refract Met Hard Mater 38:47–59

    Article  CAS  Google Scholar 

  9. Upadhyaya A (2001) Processing strategy for consolidating tungsten heavy alloys for ordnance applications. Mater Chem Phys 67:101–110

    Article  CAS  Google Scholar 

  10. Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz RJ, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You JH, Pippan R (2013) Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater 442:S181–S189

    Article  CAS  Google Scholar 

  11. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans A 1(10):2943–2951

    CAS  Google Scholar 

  12. Telu S, Mitra R, Pabi SK (2015) Effect of Y2O3 addition on oxidation behavior of W-Cr alloys. Metall Mater Trans A 46A:5909–5919

    Article  Google Scholar 

  13. Patra A, Saxena R, Karak SK (2016) Combined effect of Ni and nano-Y2O3 addition on microstructure, mechanical and high temperature behavior of mechanically alloyed W-Mo. Int J Refract Met Hard Mater 60:131–146

    Article  CAS  Google Scholar 

  14. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  15. Suryanarayana C (2004) Mechanical alloying and milling, vol 13. Marcel Dekker Inc, New York

    Book  Google Scholar 

  16. Glieter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3

    Article  Google Scholar 

  17. Glieter H (2001) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1

    Article  Google Scholar 

  18. Mondal A, Upadhyaya A, Agrawal D (2011) Effect of heating mode and sintering temperature on the consolidation of 90W–7Ni–3Fe alloys. J Alloy Compd 509(2):301–310

    Article  CAS  Google Scholar 

  19. Das J, Rao GA, Pabi SK, Sankaranarayana M, Nandy TK (2014) Thermo-mechanical processing, microstructure and tensile properties of a tungsten heavy alloy. Mater Sci Eng A 613:48–59

    Article  CAS  Google Scholar 

  20. Ruiz PL, Ordas N, Iturriza I, Walter M, Gaganidze E, Lindig S, Koch F, Rosales CG (2013) Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application. J Nucl Mater 442(1–3):S219–S224

    Article  Google Scholar 

  21. Han Y, Fan J, Liu T, Cheng H, Tian J (2012) The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Met Hard Mater 34:18–26

    Article  CAS  Google Scholar 

  22. Daoush WMR, Elsayed AHA, El Kady OAG, Sayed MA, Dawood OM (2016) Enhancement of physical and mechanical properties of oxide dispersion-strengthened tungsten heavy alloys. Metall Mater Trans A 47(5):2387–2395

    Article  CAS  Google Scholar 

  23. Munoz A, Monge MA, Savoini B, Rabanal ME, Garces G, Pareja R (2011) La2O3-reinforced W and W–V alloys produced by hot isostatic pressing. J Nucl Mater 417(1–3):508–511

    Article  CAS  Google Scholar 

  24. Lee KH, Cha SI, Ryu HJ, Hong SH (2007) Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater Sci Eng A 452–453:55–60

    Article  Google Scholar 

  25. Patra A, Karak SK, Pal S (2017) Fabrication of nano-Y2O3 dispersed tungsten alloys by mechanical alloying followed by conventional and spark plasma sintering. PhD thesis, National Institute of Technology, Rourkela

    Google Scholar 

  26. Kang SJL, Kim KH, Yoon DN (1991) Densification and shrinkage during liquid-phase sintering. J Am Ceram Soc 74:425–427

    Article  CAS  Google Scholar 

  27. Wang JG, Raj R (1984) Mechanisms of superplastic flow in a fine-grained ceramic containing some liquid phase. J Am Ceram Soc 67:399–409

    Article  CAS  Google Scholar 

  28. Ren C, Koopman M, Fang ZZ, Zhang H (2016) The effects of atmosphere on the sintering of ultrafine-grained tungsten with Ti. JOM-J Min Met Mater S68(11):2864–2868

    Article  Google Scholar 

  29. Basu B, Balani K (2011) Advanced structural ceramics. Wiley, New Jersey, p 116

    Book  Google Scholar 

  30. Heady RB, Cahn JW (1970) An analysis of the capillary forces in liquid-phase sintering of spherical particles. Metall Trans B 1(1):185–189

    CAS  Google Scholar 

  31. Skandan G (1995) Processing of nanostructured zirconia ceramics. Nanostruct Mater 5(2):111–126

    Article  CAS  Google Scholar 

  32. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York

    Book  Google Scholar 

  33. Patra A, Saxena R, Karak SK, Laha T, Sahoo SK (2017) Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering. J Alloys Compd 707:245–250

    Article  CAS  Google Scholar 

  34. Lin KH, Hsu C-S, Lin ST (2003) Precipitation of an intermetallic phase in Mo-alloyed tungsten heavy alloys. Mater Trans 44(3):358–366

    Article  CAS  Google Scholar 

  35. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39

    Article  CAS  Google Scholar 

  36. Huppmann WJ, Riegger H, Kaysser WA, Smolej V, Pejovnik S (1979) The elementary mechanisms of liquid phase sintering, I rearrangements. Z Metallkd 70:707

    CAS  Google Scholar 

  37. Dieter G (1928) Mechanical metallurgy, SI Metric edn. McGraw-Hill Co, Singapore

    Google Scholar 

  38. Hull D, Bacon DJ (2001) Introduction to dislocations. Elsevier Press, UK

    Google Scholar 

  39. Alhamidi A, Edalati K, Iwaoka H, Horita Z (2014) Effect of temperature on solid-state formation of bulk nanograined intermetallic Al3Ni during high-pressure torsion. Phil Mag 94(9):876–887

    Article  CAS  Google Scholar 

  40. Li Z, Lu Z, Xie R, Lu C, Liu C (2016) Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels. Mater Sci Eng A 660:52–60

    Article  CAS  Google Scholar 

  41. Panelli R, Filho FA (1998) Compaction equation and its use to describe powder consolidation behavior. Powder Metall 41(2):131–133

    Google Scholar 

  42. Mayo M (1996) Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev 41(3):85–115

    Article  CAS  Google Scholar 

  43. Groza JR (2007) Nanocrystalline powder consolidation methods. In: Koch Carl C (ed) Nanostructured materials: processing, properties and applications. William Andrew Publishing, Norwich, NY (USA), p 196

    Google Scholar 

  44. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  CAS  Google Scholar 

  45. Luo J, Stevens R (1999) Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Int 25:281–286

    Article  CAS  Google Scholar 

  46. Liu G, Zhang GJ, Jiang F, Ding XD, Sun YJ, Sun J, Ma E (2013) Nanostructured high strength molybdenum alloys with unprecedented tensile ductility. Nat Mater 12:344–350

    Article  CAS  Google Scholar 

  47. Ma E, Zhu T (2017) Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today 20(6):323–331

    Article  CAS  Google Scholar 

  48. Karak SK, DuttaMajumdar J, Witczak Z, Lojkowski W, Manna I (2013) Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion. Mater Sci Eng A 580:231–241

    Article  CAS  Google Scholar 

  49. Edmonds DV (1991) Structure property relationships in sintered heavy alloys. Int J Refract Met Hard Mater 11(5):15

    Article  Google Scholar 

  50. Pan Y, Ding L, Li H, Xiang D (2017) Effects of Y2O3 on the microstructure and mechanical properties of spark plasma sintered fine-grained W-Ni-Mn alloy. J Rare Earths 35(11):1149–1155

    Article  CAS  Google Scholar 

  51. Sun D, Liang C, Shang J, Yin J, Song Y, Li W, Liang T, Zhang X (2016) Effect of Y2O3 contents on oxidation resistance at 1150 °C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy. Appl Surf Sci 385:587–596

    Article  CAS  Google Scholar 

  52. Patra A, Saxena R, Sahoo RR, Karak SK, Laha T (2018) Evaluation of thermal, fracture and high temperature behavior of mechanically alloyed and spark plasma sintered nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys. Mater Perform Charact 7(1):515–531

    Google Scholar 

  53. Wang Y, Wang D, Liu H, Zhu W, Zan X (2012) Preparation and characterization of sintered molybdenum doped with MoSi2/La2O3/Y2O3 composite particle. Mater Sci Eng A 558:497–501

    Article  CAS  Google Scholar 

  54. Wang L (2007) Mechanical properties of materials. Northeastern University Press, Shenyang

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patra, A., Karak, S.K., Laha, T. (2018). Synthesis and Characterization of Oxide Dispersion Strengthened W-based Nanocomposite. In: Sidhu, S., Bains, P., Zitoune, R., Yazdani, M. (eds) Futuristic Composites . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2417-8_13

Download citation

Publish with us

Policies and ethics