Skip to main content

Fabrication of Metal Matrix Composites by Friction Stir Processing

  • Chapter
  • First Online:
Futuristic Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Friction stir processing (FSP) is gaining wide attention as an alternative route for the fabrication of metal matrix composites. This chapter commences with a general introduction to various aspects of metal matrix composites and various processing routes for their fabrication. It then provides basics of friction stir processing and briefs about multiple methods of secondary phase/reinforcement incorporation in the matrix. In the subsequent section, the effect of different FSP parameters on the mechanical properties and wear behavior of the composite material are discussed in detail. The chapter finally presents the summary of the significant aspects of composite fabrication by FSP and scope for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540

    Article  CAS  Google Scholar 

  2. Jayalakshmi S, Gupta M (2015) Metallic amorphous alloy reinforcements in light metal matrices. Springer Briefs in Materials. ISBN 978-3-319-15015-4

    Google Scholar 

  3. Matthews FL, Rawlings RD (2005) Composite materials: engineering and Science. Woodhead Publishing Ltd. and CRC Press LLC

    Google Scholar 

  4. Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Singh RA (2017) Aluminum and magnesium metal matrix nanocomposites. Springer Nature Singapore Pte Ltd

    Google Scholar 

  5. Gangil N, Siddique AN, Maheshwari S (2017) Aluminium based in-situ composite fabrication through friction stir processing: a review. J Alloy Compd 715:91–104

    Article  CAS  Google Scholar 

  6. Bauri R, Yadav D (2018) Metal matrix composites by friction stir processing. Butterworth-Heinemann, Elsevier. ISBN: 978-0-12-813729-1

    Google Scholar 

  7. Sharma V, Prakash U, Kumar BVM (2015) Surface composites by friction stir processing: a review. J Mater Process Technol 224:117–134

    Article  CAS  Google Scholar 

  8. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater 42:163–168

    Article  Google Scholar 

  9. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310

    Article  Google Scholar 

  10. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminum alloy. Mater Des 29(2):362–373

    Article  CAS  Google Scholar 

  11. Ratna SB (2016) Different strategies of secondary phase incorporation into metallic sheets by friction stir processing in developing surface composites. Int J Mech Mater Eng 11:12

    Article  Google Scholar 

  12. Arora A, De A, DebRoy T (2011) Toward optimum friction stir welding tool shoulder diameter. Scr Mater 64(1):9–12

    Article  CAS  Google Scholar 

  13. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125:138–145

    Article  Google Scholar 

  14. Al-Ghamdi KA, Hussain G, Hashemi R (2017) Fabrication of metal-matrix AL7075T651/TiN nano composite employing friction stir process. Proc IMechE Part B: J Eng Manuf 231(8):1319–1331

    Article  CAS  Google Scholar 

  15. Lin PC, Pan J, Pan T (2008) Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: welds made by a concave tool. Int J Fatigue 30(1):74–89

    Article  Google Scholar 

  16. Lin PC, Pan J, Pan T (2008) Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 2: welds made by a flat tool. Int J Fatigue 30(1):90–105

    Article  CAS  Google Scholar 

  17. Cederqvist L, Sorensen CD, Reynolds AP, Oberg T (2009) Improved process stability during friction stir welding of 5 cm thick copper canisters through shoulder geometry and parameter studies. Sci Technol Weld Joining 14(2):178–184

    Article  CAS  Google Scholar 

  18. Thomas WM, Nicholas ED, Smith SD, Das SK, Kaufman JG, Lienert TJ (2001) Aluminum 2001—proceedings of the TMS 2001 aluminum automotive and joining sessions, TMS, p 213

    Google Scholar 

  19. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A A485(1–2):367–374

    Google Scholar 

  20. Zhao YH, Lin SB, Wu L, Qu FX (2005) The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Mater Lett 59(23):2948–2952

    Article  CAS  Google Scholar 

  21. Chowdhury SM, Chen DL, Bhole SD, Cao X (2010) Tensile properties of a friction stir welded magnesium alloy: effect of pin tool thread orientation and weld pitch. Mater Sci Eng A A527(21–22):6064–6075

    Article  CAS  Google Scholar 

  22. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A A419(1–2):381–388

    Article  CAS  Google Scholar 

  23. Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2009) Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminum surface. Sci Technol Weld Joining 14(5):413–425

    Article  CAS  Google Scholar 

  24. Hashemi R, Hussain G (2015) Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: a comparison of tool geometries and number of passes. Wear 324. https://doi.org/10.1016/j.wear.2014.11.024

  25. Azizieh M, Kokabi AH, Abachi P (2011) Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des 32:2034–2041

    Article  CAS  Google Scholar 

  26. Liu Q, Ke L, Liu F, Huang C, Xing L (2013) Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater Des 45:343–348

    Article  CAS  Google Scholar 

  27. Barmouz M, Givi MKB (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos Part A: Appl S 42:1445–1453

    Article  Google Scholar 

  28. Anvari SR, Karimzadeh F, Enayati MH (2013) Wear characteristics of Al–Cr–O surface nano-composite layer fabricated on Al6061 plate by friction stir processing. Wear 304:144–151

    Article  CAS  Google Scholar 

  29. Hassan AM, Mayyas AT, Alrashdan A, Hayajneh MT (2008) Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. J Mater Sci 43(15):5368–5375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, V., Sharma, C. (2018). Fabrication of Metal Matrix Composites by Friction Stir Processing. In: Sidhu, S., Bains, P., Zitoune, R., Yazdani, M. (eds) Futuristic Composites . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2417-8_12

Download citation

Publish with us

Policies and ethics