Skip to main content

Bio-compounds Production from Agri-food Wastes Under a Biorefinery Approach: Exploring Environmental and Social Sustainability

  • Chapter
  • First Online:

Abstract

The society and industrial sectors are facing important challenges regarding the production of bioproducts influenced by social responsibility and environmental consequences. Biorefinery development reports two important goals in the transition towards a bio-based economy: (i) the displacement of fossil-based products by biomass-based ones and (ii) the setting up of a strong bio-based industry. In this sense, research is being addressed into bio-based products opportunities from biomass residues with the aim of obtaining promising building blocks and high-added value products. Environmental and economic analysis of some bioproducts can be found in the literature. However, the social dimension of sustainability is regularly forgotten although many attempts have been performed to standardise and provide the procedures to assess the social dimension. This chapter presents the production of potential bioproducts from agri-food industrial sector and assesses their sustainability from environmental and social perspectives with the aim of identifying potential hotspots. Since the methodology to assess environmental consequences is well known and standardised, special attention is paid on the selection of the social indicators considered for analysis. To do so, social impact assessment is conducted through involved stakeholders, surveys and field experiments. Thus, the methodology to assess the social dimension has been formulated in detail considering very different social well-being-based indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agócs, A., Nagy, V., Szabó, Z., Márk, L., Ohmacht, R., & Deli, J. (2007). Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science and Emerging Technologies, 8, 390–394.

    Article  CAS  Google Scholar 

  • Alañón, M. E., Alarcón, M., Marchante, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2017). Extraction of natural flavorings with antioxidant capacity from cooperage by-products by green extraction procedure with subcritical fluids. Industrial Crops and Products, 103, 222–232.

    Article  CAS  Google Scholar 

  • Alkotaini, B., Koo, H., & Kim, B. S. (2016). Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae. Korean Journal of Chemical Engineering, 33, 1669–1673.

    Article  CAS  Google Scholar 

  • Al-Salem, S. M., Evangelisti, S., & Lettieri, P. (2014). Life cycle assessment of alternative technologies for municipal solid waste and plastic solid waste management in the Greater London area. Chemical Engineering Journal, 244, 391–402.

    Article  CAS  Google Scholar 

  • Alvarado-Morales, M., Gunnarsson, I. B., Fotidis, I. A., Vasilakou, E., Lyberatos, G., & Angelidaki, I. (2015). Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Research, 9, 126–132.

    Article  Google Scholar 

  • Aparicio, S., & Alcalde, R. (2009). The green solvent ethyl lactate: An experimental and theoretical characterization. Green Chemistry, 11, 65–78.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Wasim Siddiqui, Md, et al. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44, 1866–1874.

    Google Scholar 

  • Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable Chemicals. Food Chemistry, 225, 10–22.

    Article  CAS  Google Scholar 

  • Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96–109.

    Article  CAS  Google Scholar 

  • Baysal, T., Ersus, S., & Starmans, D. A. (2000). Supercritical (CO2) extraction of β-carotene and lycopene from tomato paste waste. Journal of Agricultural and Food Chemistry, 48, 5507–5511.

    Article  CAS  Google Scholar 

  • Bechtold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic acid: A newplatform chemical for biobased polymers from renewable resources. Chemical Engineering Technology, 31, 647–654.

    Article  CAS  Google Scholar 

  • Blaga, S. (2013). Corporate social responsibility from a Romanian perspective. Cluj-Napoca, Romania: University Babes-Bolay Press. ISBN 978-973-595-540-3.

    Google Scholar 

  • Blok, K., Huijbregts, M., Patel, M.K., Hertwich, E., Hauschild, M., Sellke, P., et al. (2013). Utrecht University Repository (Book). Report prepared within the EC 7th Framework (Project n°: 227078), Project title: Development and application of a standardized methodology for the PROspective SUstaInability Assessment of Technologies.

    Google Scholar 

  • Bond, A. J., & Morrison-Saunders, A. (2011). Re-evaluating sustainability assessment: Aligning the vision and the practice. Environmental Impact Assessment Review, 31, 1–7.

    Article  Google Scholar 

  • Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top10” revisited. Green Chemistry, 12, 539–554.

    Article  CAS  Google Scholar 

  • Budzianowski, W. M., & Postawa, K. (2016). Total chain integration of sustainable biorefinery systems. Applied Energy, 184, 1432–1446.

    Article  Google Scholar 

  • Cesário, M. T., da Fonseca, M., Manuela, R., Marques, M. M., de Almeida, M., & Catarina, M. D. (2018). Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnology Advances, 36, 798–817.

    Article  CAS  Google Scholar 

  • Chun, Y., Yunxiao, L., Ashok, S., Seol, E., & Park, S. (2014). Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnology and Bioprocess Engineering, 19, 858–865.

    Article  CAS  Google Scholar 

  • Dávila, D., Gordobil, O., Labidi, J., & Gullón, P. (2016). Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresource Technology, 211, 636–644.

    Article  CAS  Google Scholar 

  • Deng, G. F., Shen, C., Xu, X. R., Kuang, R. D., Guo, Y. J., Zeng, L. S., et al. (2012). Potential of fruit wastes as natural resources of bioactive compounds. International Journal of Molecular Sciences, 13, 8308–8323.

    Article  CAS  Google Scholar 

  • Doka, G. (2007). Life cycle inventories of waste treatment services. Ecoinvent Report No 13, Dübendorf, Switzerland.

    Google Scholar 

  • dos Santos, T. C., Gomes, D. P. P., Bonomo, R. C. F., & Franco, M. (2012). Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry, 133, 1299–1304.

    Article  CAS  Google Scholar 

  • Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Beserra Carioca, O., et al. (2015). Biowaste biorefinery in Europe: Opportunities and research & development needs. New Biotechnology, 32, 100–108.

    Article  CAS  Google Scholar 

  • Fernández-Bolaños, J., Rodríguez, G., Gómez, E., Guillén, R., Jiménez, A., Heredia, A., et al. (2004). Total recovery of the waste of two-phase olive oil processing: Isolation of added-value compounds. Journal of Agricultural and Food Chemistry, 52, 5849–5855.

    Article  CAS  Google Scholar 

  • Fitzpatrick, S. W. (2006). The biofine technology: A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. ACS Symposium Series, 921, 271–287.

    CAS  Google Scholar 

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26, 68–87.

    Article  CAS  Google Scholar 

  • Gilani, B., & Stuart, P. R. (2015). Life cycle assessment of an integrated forest biorefinery: Hot water extraction process case study. Biofuels, Bioproducts and Biorefining, 9, 677–695.

    Article  CAS  Google Scholar 

  • Gilpin, G., & Andrae, A. S. G. (2017). Comparative attributional life cycle assessment of European cellulase enzyme production for use in second-generation lignocellulosic bioethanol production. The International Journal of Life Cycle Assessment, 22, 1034–1053.

    Article  CAS  Google Scholar 

  • Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2013). Introduction to LCA with SimaPro 8. The Netherlands: PRé Consultants.

    Google Scholar 

  • Gómez, B., Gullón, B., Yañez, R., Parajó, J. C., & Alonso, J. L. (2013). Pectic-oligosacharides from lemon peel wastes: Production, purification and chemical characterization. Journal of Agricultural and Food Chemistry, 61, 10043–10053.

    Article  CAS  Google Scholar 

  • González-García, S., Gullón, B., & Moreira, M. T. (2018). Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides. Journal of Cleaner Production, 172, 4066–4073.

    Article  CAS  Google Scholar 

  • González-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170–180.

    Article  CAS  Google Scholar 

  • González-Paramás, A. M., Esteban-Ruano, S., Santos-Buelga, C., de Pascual-Teresa, S., & Rivas-Gonzalo, J. C. (2004). Flavanol content and antioxidant activity in winery byproducts. Journal of Agricultural and Food Chemistry, 52, 234–238.

    Article  CAS  Google Scholar 

  • Grajek, W., Olejnik, A., & Sip, A. (2005). Probiotics: Prebiotics and antioxidants as functional foods. Acta Biochimica Polonica, 52, 665–671.

    CAS  Google Scholar 

  • Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., et al. (2013). Policy: Sustainable development goals for people and planet. Nature, 495, 305–307.

    Article  CAS  Google Scholar 

  • Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., et al. (2001). Life cycle assessment. An operational guide to the ISO Standards. Leiden, The Netherlands: Centre of Environmental Science.

    Google Scholar 

  • Gullón, B., Eibes, G., Moreira, M. T., Dávila, I., Labidi, J., & Gullón, P. (2017). Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Industrial Crops and Products, 107, 105–113.

    Article  CAS  Google Scholar 

  • Gullón, P., González-Muñoz, M. J., van Gool, M. P., Schols, H. A., Hirsch, J., Ebringerová, A., et al. (2010). Production, refining, structural characterization and fermentability of rice husk xylooligosaccharides. Journal of Agricultural and Food Chemistry, 58, 3632–3641.

    Article  CAS  Google Scholar 

  • Gullón, P., Gullón, B., Dávila, I., Labidi, J., & Gonzalez-Garcia, S. (2018). Comparative environmental life cycle assessment of integral revalorization of vine shoots from a biorefinery perspective. Science of the Total Environment, 624, 225–240.

    Article  CAS  Google Scholar 

  • Gullón, B., Gullón, P., Sanz, Y., Alonso, J. L., & Parajó, J. C. (2011). Prebiotic potential of a refined product containing pectic oligosaccharides. LWT—Food Science and Technology, 44, 1687–1696.

    Article  CAS  Google Scholar 

  • Gullón, B., Gullón, P., Tavaria, F., Pintado, M., Gomes, A. M., Alonso, J. L., et al. (2014). Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. Journal of Functional Foods, 6, 438–449.

    Article  CAS  Google Scholar 

  • Hollmann, J., & Lindhauer, M. G. (2005). Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydrate Polymers, 59, 225–230.

    Article  CAS  Google Scholar 

  • Hwang, H. J., Kim, S. M., Chang, J. H., & Lee, S. B. (2012). Lactic acid production from seaweed hydrolysate of Enteromorpha prolifera (chlorophyta). Journal of Applied Phycology, 24, 935–940.

    Article  CAS  Google Scholar 

  • Ilmen, M., Koivuranta, K., Ruohonen, L., Suominen, P., & Penttila, M. (2007). Efficient production of L-lactic acid from xylose by Pichia stipitis. Applied and Environmental Microbiology, 73, 117–123.

    Article  CAS  Google Scholar 

  • Iribarren, D., Martín-Gamboa, M., O’Mahony, T., & Dufour, J. (2016). Screening of socio-economic indicators for sustainability assessment: A combined life cycle assessment and data envelopment analysis approach. The International Journal of Life Cycle Assessment, 21, 202–214.

    Article  Google Scholar 

  • ISO 14044 (2006). Environmental management e life cycle assessment e principles and framework. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 14045. (2012). Environmental management-eco-efficiency assessment of product systems-principles, requirements and guidelines. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jørgensen, A., Le Bocq, A., Nazarkina, L., & Hauschild, M. (2008). Methodologies for social life cycle assessment. The International Journal of Life Cycle Assessment, 13, 96–103.

    Article  Google Scholar 

  • Jung, K. A., Lim, S. R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190.

    Article  CAS  Google Scholar 

  • Kam, B. (2009). Carbohydrate-based food processing wastes as biomass for biorefining of biofuels and chemicals (chapter 20). In Food Science, Technology and Nutrition: Volume 2. Handbook of waste management and co-product recovery in food processing (pp. 479–514). Woodhead Publishing Series.

    Google Scholar 

  • Kemppainen, K. (2015). Production of sugars, ethanol and tannin from spruce bark and recovered fibres (Doctoral thesis). Aalto University, Department of Biotechnology and Chemical Technology, Finland. ISBN 978-951-38-8215-0 (electronic). http://www.vtt.fi/inf/pdf/science/2015/S76.pdf.

  • Kralisch, D., Ott, D., & Gericke, D. (2014). Rules and benefits of life cycle assessment in green chemical process and synthesis design: A tutorial review. Green Chemistry, 17, 123–145.

    Article  CAS  Google Scholar 

  • Kurzrock, T., & Weuster-Botz, D. (2010). Recovery of succinic acid from fermentation broth. Biotechnololgy Letters, 32, 331–339.

    Article  CAS  Google Scholar 

  • Lama-Muñoz, A., Romero-García, J. M., Cara, C., Moya, M., & Castro, E. (2014). Low energy-demanding recovery of antioxidants and sugars from olive stones as preliminary steps in the biorefinery context. Industrial Crops and Products, 60, 30–38.

    Article  CAS  Google Scholar 

  • Lavelli, V., & Torresanim, M. C. (2011). Modelling the stability of lycopene-rich by-products of tomato processing. Food Chemistry, 125, 529–535.

    Article  CAS  Google Scholar 

  • Lenucci, M. S., Durante, M., Anna, M., Dalessandro, G., & Piro, G. (2013). Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. Journal of Agricultural Food Chemistry, 61, 3683–3692.

    Article  CAS  Google Scholar 

  • Li, X., He, X., Lv, Y., & He, Q. (2014). Extraction and functional properties of water-soluble dietary fiber from apple pomace. Journal of Food Process Engineering, 37, 293–298.

    Article  CAS  Google Scholar 

  • Li, Q., Wang, D., Wu, Y., Li, W., Zhang, Y., Xing, J., et al. (2010). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technology, 72, 294–300.

    Article  CAS  Google Scholar 

  • López-Garzón, C. S., van der Wielen, L. A. M., & Straathof, A. J. J. (2014). Green upgrading of succinate using dimethyl carbonate for a better integration with fermentative production. Chemical Engineering Journal, 235, 52–60.

    Article  CAS  Google Scholar 

  • Lun, O. K., Wai, T. B., & Ling, L. S. (2014). Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. International Food Research Journal, 21, 953–958.

    CAS  Google Scholar 

  • Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100, 736–741.

    Article  CAS  Google Scholar 

  • Marinho, G. S., Alvarado-Morales, M., & Angelidaki, I. (2016). Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Research, 16, 102–109.

    Article  Google Scholar 

  • Martínez, M., Gullón, B., Schols, H. A., Alonso, J. L., & Parajó, J. C. (2009). Assessment of the production of oligomeric compounds from sugar beet pulp. Industrial and Engineering Chemistry Research, 48, 4681–4687.

    Article  CAS  Google Scholar 

  • Mazumdar, S., Lee, J., & Oh, M. K. (2013). Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresource Technology, 136, 329–336.

    Article  CAS  Google Scholar 

  • Mikami, K. (2013). Current advances in seaweed transformation. In: G. R. Baptista (Ed.), An integrated view of the molecular recognition and toxinology—From analytical procedures to biomedical applications (pp. 324–347). InTech.

    Google Scholar 

  • Mohdaly, A. A., Sarhan, M. A., Smetanska, I., & Mahmoud, A. (2010). Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture, 90, 218–226.

    Article  CAS  Google Scholar 

  • Monrad, J. K., Suárez, M., Motilva, M. J., King, J. W., Srinivas, K., & Howarda, L. R. (2014). Extraction of anthocyanins and flavan-3-ols from red grape pomace continuously by coupling hot water extraction with a modified expeller. Food Research International, 65, 77–87.

    Article  CAS  Google Scholar 

  • Moreira, D., Gullón, B., Gullón, P., Gomes, A., & Tavaria, F. (2016). Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food and Function, 7, 3273–3282.

    Article  CAS  Google Scholar 

  • Moussa, H. I., Elkamel, A., & Young, S. B. (2016). Assessing energy performance of bio-based succinic acid production using LCA. Journal of Cleaner Production, 139, 761–769.

    Article  CAS  Google Scholar 

  • Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., et al. (2016). Pectin content and composition from different food waste streams. Food Chemistry, 201, 37–45.

    Article  CAS  Google Scholar 

  • Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., & Mae, K. (2014). Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Industrial and Engineering Chemistry Research, 53, 11611–11621.

    Article  CAS  Google Scholar 

  • Mushtaq, Q., Irfan, M., Tabssum, F., & Qazi, J. I. (2017). Potato peels: A potential food waste for amylase production. Journal of Food Process Engineering, 40, 12512–12520.

    Article  CAS  Google Scholar 

  • Muthaiyan, A., Hernandez-Hernandez, O., Moreno, F. J., Sanz, M. L., & Ricke, S. C. (2012). Hydrolyzed caseinomacropeptide conjugated galactooligosaccharides support the growth and enhance the bile tolerance in lactobacillus strains. Journal of Agricultural and Food Chemistry, 60, 6839–6845.

    Article  CAS  Google Scholar 

  • Nadour, M., Michaud, P., & Moulti-Mati, F. (2012). Antioxidant activities of polyphenols extracted from olive (Olea europaea) of chamlal variety. Applied Biochemistry and Biotechnology, 167, 1802–1810.

    Article  CAS  Google Scholar 

  • Ndayishimiye, J., & Chun, B. S. (2017). Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) by-products using supercritical carbon dioxide. Biomass and Bioenergy, 106, 1–7.

    Article  CAS  Google Scholar 

  • Neupane, B., Halog, A., & Lilieholm, R. J. (2013). Environmental sustainability of wood-derived ethanol: A life cycle evaluation of resource intensity and emissions in Maine, USA. Journal of Cleaner Production, 44, 77–84.

    Article  CAS  Google Scholar 

  • Norris, C. B. (2014). Data for social LCA. The International Journal of Life Cycle Assessment, 19, 261–265.

    Article  Google Scholar 

  • Norris, C. B., Cavan, D. A., & Norris, G. (2012). Identifying social impacts in product supply chains: Overview and application of the social hotspot database. Sustainability, 4, 1946–1965.

    Article  Google Scholar 

  • Orjuela, A., Orjuela, A., Lira, C. T., & Miller, D. J. (2013). A novel process for recovery of fermentation-derived succinic acid: Process design and economic analysis. Bioresource Technology, 139, 235–241.

    Article  CAS  Google Scholar 

  • Padma, P. N., Anuradha, K., Nagaraju, B., Kumar, V. S., & Reddy, G. (2012). Use of pectin rich fruit wastes for polygalacturonase production by Aspergillus awamori MTCC 9166 in solid state fermentation. Journal of Bioprocessing and Biotechniques, 2, 2.

    Article  CAS  Google Scholar 

  • Panouillé, M., Ralet, M. C., Bonnin, E., & Thibault, J. F. (2007). Recovery and reuse of trimmings and pulps from fruit and vegetable processing. In K. W. Waldron (Ed.), Handbook of waste management and co-product recovery in food processing (pp. 417–447). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Pateraki, C., Patsalou, M., Vlysidis, A., Kopsahelis, N., Webb, C., Koutinas, A. A., et al. (2016). Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 112(2016), 285–303.

    Article  CAS  Google Scholar 

  • Pazmiño-Durán, E. A., Giusti, M. M., Wrolstad, R. E., & Glória, M. B. A. (2001). Anthocyanins from banana bracts (Musa × paradisiaca) as potential food colorants. Food Chemistry, 73, 327–332.

    Article  Google Scholar 

  • Pinazo, J. M., Domine, M. E., Parvulescu, V., & Petru, F. (2015). Sustainability metrics for succinic acid production: A comparison between biomass-based and petrochemical routes. Catalysis Today, 239, 17–24.

    Article  CAS  Google Scholar 

  • PRé Consultants. (2017). SimaPro database manual-methods library. The Netherlands.

    Google Scholar 

  • Ramesh, T., & Kalaiselvam, M. (2011). An experimental study on citric acid production by Aspergillus niger using Gelidiella Acerosa as a substrate. Indian Journal of Microbiology, 51, 289–293.

    Article  CAS  Google Scholar 

  • Ribeiro da Silva, L. M., Teixeira de Figueiredo, E. A., Silva Ricardo, N. M., Pinto Vieira, I. G., Wilane de Figueiredo, R., Brasil, I. M., et al. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404.

    Article  CAS  Google Scholar 

  • Ruiz, E., Gullón, B., Moura, P., Carvalheiro, F., Eibes, G., Cara, C., et al. (2017). Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydrate Polymers, 169, 149–156.

    Article  CAS  Google Scholar 

  • Sabeena Farvin, K. H., Grejsen, H. D., & Jacobsen, C. (2012). Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): Effect on lipid and protein oxidation. Food Chemistry, 131, 843–851.

    Article  CAS  Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2017). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17, 512–531.

    Article  CAS  Google Scholar 

  • Sala, S., Anton, A., McLaren, S. J., Notarnicola, B., Saouter, E., & Sonesson, U. (2017). In quest of reducing the environmental impacts of food production and consumption. Journal of Cleaner Production, 140, 387–398.

    Article  Google Scholar 

  • Sandhya, R., & Kurup, G. (2013). Screening and isolation of pectinase from fruit and vegetable wastes and the use of orange waste as a substrate for pectinase production. International Research Journal of Biological Sciences, 2, 34–39.

    Google Scholar 

  • Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 26, 100–108.

    Article  CAS  Google Scholar 

  • Searcy, C. (2012). Corporate sustainability performance measurement systems: A review and research agenda. Journal of Business Ethics, 107, 239–253.

    Article  Google Scholar 

  • Seifi, M., Seifi, P., Hadizadeh, F., & Mohajeri, S. A. (2013). Extraction of lycopene from tomato paste by ursodeoxycholic acid using the selective inclusion complex method. Journal of Food Science, 78, 1680–1685.

    Article  CAS  Google Scholar 

  • Singh, A., Sabally, K., Kubow, S., Donnelly, D. J., Gariepy, Y., Orsat, V., et al. (2011). Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules, 16, 2218–2232.

    Article  CAS  Google Scholar 

  • Smidt, M., den Hollander, J., Bosch, H., Xiang, Y., van der Graaf, M., Lambin, A., et al. (2016). Life cycle assessment of biobased and fossil-based succinic acid. In J. Dewulf, S. De Meester & R. Alvarenga (Eds.), Sustainability assessment of renewables-based products: Methods and case studies (pp. 307–322).

    Google Scholar 

  • Spangenberg, J. H. (2004). Reconciling sustainability and growth: Criteria, indicators, policies. Sustainable Development, 12, 74–86.

    Article  Google Scholar 

  • Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D. A., et al. (2014). Natural bioactive compounds from winery by-products as health promoters: A review. International Journal of Molecular Sciences, 15(9), 15638–15678.

    Article  CAS  Google Scholar 

  • UNEP-SETAC. (2009). In C. Benoît Norris & B. Mazijn (Eds.), Guidelines for social life cycle assessment of products. Paris, France: United Nations Environment Programme (UNEP). Available from: http://www.unep.org/publications/.

  • United Nations. (2015). Time for global action for people and planet. Sustainable development knowledge platform. United Nations Department of Economic and Social Affairs. Available from: https://sustainabledevelopment.un.org/post2015.

  • Van Maris, A. J., Konings, W. N., van Dijken, J. P., & Pronk, J. T. (2004). Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metabolic Engineering, 6, 245–255.

    Article  CAS  Google Scholar 

  • Vilas-Boas, S. G., Esposito, E., & Mendonca, M. M. (2002). Novel lignocellulolytic ability of Candida utilis during solid-substrate cultivation on apple pomace. World Journal of Microbiology & Biotechnology, 18, 541–545.

    Article  Google Scholar 

  • Wang, X., Chen, Q., & Lü, X. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 38, 129–137.

    Article  CAS  Google Scholar 

  • Weidema, B. P. (2006). The integration of economic and social aspects in life cycle assessment. International Journal of Life Cycle Assessment, 11, 89–96.

    Article  Google Scholar 

  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230.

    Article  Google Scholar 

  • Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass—Results of screening for potential candidates from sugars and synthesis gas, vol. I, U.S.Department of Energy, Oak Ridge, http://www.osti.gov/bridge.

  • Wiloso, E. I., Heijungs, R., & Huppes, G. (2014). A novel life cycle impact assessment method on biomass residue harvesting reckoning with loss of biomass productivity. Journal of Cleaner Production, 81, 137–145.

    Article  CAS  Google Scholar 

  • Zhang, Q., Cheng, C. L., Nagarajan, D., Chang, J. S., Hu, J., & Lee, D. J. (2017). Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform. Applied Energy, 206, 364–371.

    Article  CAS  Google Scholar 

  • Zheng, Z., & Shetty, K. (2000). Enhancement of pea (Pisum sativum) seedling vigour and associated phenolic content by extracts of apple pomace fermented with Trichoderma spp. Process Biochemistry, 36, 79–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by Xunta de Galicia (project ref. ED431F 2016/001), the Spanish Ministry of Economy and Competitiveness (CTQ2016-81848-REDT) and the STAR-ProBio project funded by the European Union’s Horizon 2020 Program (Grant agreement No. 727740). S.G.-G., P.G. & B.G. would like to express their gratitude to the Spanish Ministry of Economy and Competitiveness for financial support (Grant references RYC-2014-14984, IJCI-2015-25304 and IJCI-2015-25305, respectively). The authors S.G.-G. & B.G. belong to the Galician Competitive Research Group GRC 2013-032, programme co-funded by FEDER as well as to CRETUS (AGRUP2015/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara González-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-García, S., Gullón, P., Gullón, B. (2019). Bio-compounds Production from Agri-food Wastes Under a Biorefinery Approach: Exploring Environmental and Social Sustainability. In: Muthu, S. (eds) Quantification of Sustainability Indicators in the Food Sector. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2408-6_2

Download citation

Publish with us

Policies and ethics