Advertisement

The Research of 3D Power Grid Based on Big Data

  • Bing HeEmail author
  • Jin-xing Hu
  • Ge Yang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 924)

Abstract

The visual graphics can reflect the hiding relationships between different data by color, location, and the topological structure. This paper proposes a 3D power grid framework by integrating big data and 3D visualization technologies to achieve flexible, multidimensional, dynamic, and panoramic display of power data. The proposed framework consists of data acquisition, data analysis and mining and 3D visualization module. We detailed the 3D method from modeling, management and visualization techniques, and analyzed the modeling elements from geospatial data, electric graphic data, electric attribute data and data mining result dataset. Finally, we give two scenarios of 3D power system. Most of tools used in this paper are open source software. This can ensure the system stability, flexible and easy to use for the management of large distributed data resources and avoid duplication system development.

Keywords

Geospatial database Time series data CityGML Power GIS 

Notes

Acknowledgment

The work described in this paper is supported by the National High Technology Research and Development Program of China (863 Program) (2015AA050201), and the Chinese National Natural Science Foundation (41701167) and (6433012). We gratefully acknowledge the valuable cooperation and help of Guangzhou Power Supply Co. Ltd.

References

  1. 1.
    Liu, Q.: Data fusion and application of power equipment based on big data on Panorama. Informatization Constr. (9), 63–65 (2015)Google Scholar
  2. 2.
    Zhou, J.Z., Hu, R.Q.Y., Qian, Y.: Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. IEEE Trans. Parallel Distrib. Syst. 23(9), 1632–1642 (2012)CrossRefGoogle Scholar
  3. 3.
    Fang, X., Yang, D.J., Xue, G.L.: Evolving smart grid information management cloudward: a cloud optimization perspective. IEEE Trans. Smart Grid 4(1), 111–119 (2013)CrossRefGoogle Scholar
  4. 4.
    Vu, H., Liu, J.K., Huang, X.: A secure cloud computing based framework for big data information management of smart grid. IEEE Trans. Cloud Comput. 3(2), 233–244 (2014)Google Scholar
  5. 5.
    Maheshwari, K., Birman, K., Wozniak, J., Zandt, D.V.: Evaluating cloud computing techniques for smart power grid design using parallel scripting. In: Proceedings of 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Persistent Link, pp. 319–326 (2013)Google Scholar
  6. 6.
    Ravikumar, G., Pradeep, Y., Khaparde, S.A.: Graphics model for power systems using layouts and relative coordinates in CIM framework. IEEE Trans. Power Syst. 28(4), 3906–3915 (2013)CrossRefGoogle Scholar
  7. 7.
    W.Zhangjin,H.Xingwen,D.Ying,Z.Rui,Z.Qingguo, “A CGI + AJAX + SVG based monitoring method for distributed and embedded system,” in Proc. 2008 IEEE 1st Int. Conf. UBI-Media Computing,2008,pp. 144–148Google Scholar
  8. 8.
    Tang, K., Zhong, Y.J., Wu, H.F., He, P.Y., Xu, L.J., Qi, W.Q.: Design and implementation of GIS basic data quality management tools for power network. Electr. Power Inf. Commun. Technol. 14(2), 98–101 (2016)Google Scholar
  9. 9.
    Bai, Y.Q., Nie, J., Chen, Y., Li, Z., Chen, T.: Construction of GIS platform for Chongqing grid. J. Geomatics 37(5), 73–75 (2012)Google Scholar
  10. 10.
    Wei, W., Liu, B.H., Dai, J.Z., Xia, H., Li, Z.: Design and implementation of GIS-based Wuhan Grid management systems. China Electr. Power 37(1), 161–163 (2009)Google Scholar
  11. 11.
    Zhang, D.X., Miao, X., Liu, L.P., Zhang, X., Liu, K.Y.: Research on development strategy for smart grid big data. Proc. CSEE 35(1), 2–12 (2015)Google Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Skyline TerraExplorer Pro. http://www.skylinefrance.com/en/home
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced Technology, CASShenzhenChina

Personalised recommendations