Advertisement

Iterative Feedback Tuning for Two-Degree-of-Freedom System

  • Hui PanEmail author
  • Yanjin Zhang
  • Ling Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 924)

Abstract

This paper is concerned with Iterative Feedback Tuning (IFT) for Two-degree-of- freedom (2-DOF) system. The IFT is a data-driven method for tuning controller parameters, which uses the closed-loop system input-output data directly, and without establishing a mathematical model for the controlled system. The design of control system is a multi-objective problem, so a 2-DOF control system naturally has advantages over a one-degree-of- freedom (1-DOF) control system. When tuning 2-DOF system controllers, two-step method is firstly concerned. While in this paper, the application of IFT method in a 2-DOF control system is studied, which can make controllers’ parameters tuned at the same time, and the IFT method is more accurate and efficient in tracking performance and robustness. The feasibility and effectiveness of the method are verified by numerical simulation and comparison.

Keywords

IFT 2-DOF Data-driven PID Parameter tuning 

Notes

Acknowledgments

This work is supported by Shanghai Key Laboratory of Power Station Automation Technology (No.13DZ2273800).

References

  1. 1.
    Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers — their functions and optimal tuning. J. IFAC Proc. Volumes 33(4), 91–96 (2000)CrossRefGoogle Scholar
  2. 2.
    Horowitz, I.M.: Synthesis of Feedback Systems. Academic Press, Cambridge (1963)zbMATHGoogle Scholar
  3. 3.
    Araki, M., Taguchi, H.: Two-degree-of-freedom PID controller. Int. J. Control Autom. Syst. 1(4), 18–25 (2003)Google Scholar
  4. 4.
    Yukitomo, M., Shigemasa, T., Baba, Y.: A two degrees of freedom PID control system, its features and applications. In: Control Conference, IEEE, 2004, pp. 456–459 (2004)Google Scholar
  5. 5.
    Araki, M.: Two-degree-of-freedom control system – I. J. Syst. Control 29, 649–656 (1985)Google Scholar
  6. 6.
    Ye, S.U., Han, P., Wang, D.F.: Chaos optimization of two degree-of-freedom PID control. J. Comput. Simul. 21(11), 164–166 (2004)Google Scholar
  7. 7.
    Taguchi, H.: Two-degree-of-freedom PID controllers - their functions and optimal tuning. In: IFAC Digital Control: Past, Present and Future of PID Control, 5–7 April 2000, Terrassa, Spain (2000)Google Scholar
  8. 8.
    Taguchi, H., Kokawa, M., Araki, M.: Optimal tuning of two-degree-of-freedom PD controllers. In: Proceedings of the 4th Asian Control Conference, 25–27 September 2002, Singapore (2002)Google Scholar
  9. 9.
    Taguchi, H., Doi, M., Araki, M.: Optimal parameters of two-degrees-of-freedom PID control systems. J. Trans. Soc. Instrum. Control Eng. 23(9), 889–895 (2009)CrossRefGoogle Scholar
  10. 10.
    Lecchini, A., Campi, M.C., Savaresi, S.M.: Virtual reference feedback tuning for two degree of freedom controllers. Int. J. Adapt. Control Signal Process. 16(5), 355–371 (2002)CrossRefGoogle Scholar
  11. 11.
    Hjalmarsson, H., Gunnarsson, S., Gevers, M.: A convergent iterative restricted complexity control design scheme. In: 1994 Proceedings of the IEEE Conference on Decision and Control, pp. 1735–1740 (1994)Google Scholar
  12. 12.
    Xu, J.X., Hou, Z.S.: Notes on data-driven system approaches. J. Acta Autom. Sinica 35(6), 668–675 (2009)Google Scholar
  13. 13.
    Hjalmarsson, H., Gevers, M., Gunnarsson, S.: Iterative feedback tuning: theory and applications. J. IEEE Control Syst. 18(4), 26–41 (1998)CrossRefGoogle Scholar
  14. 14.
    Hjalmarsson, H.: Iterative feedback tuning—an overview. J Int. J. Adapt. Control Signal Process. 16(5), 373–395 (2002)CrossRefGoogle Scholar
  15. 15.
    Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of dynamic systems by learning: a new control theory for servomechanism or mechatronics systems. In: 2007 IEEE Conference on Decision and Control, pp. 1064–1069 (1984)Google Scholar
  16. 16.
    Han, Z.G., Hou, Z.S.: Robust model-free learning adaptive control for nonlinear systems. Control Decis. (2), 137–142 (1995)Google Scholar
  17. 17.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Campi, M.C., Lecchini, A., Savaresi, S.M.: Brief virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica 38(8), 1337–1346 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Safonov, M.G., Tsao, T.C.: The unfalsified control concept: a direct path from experiment to controller. In: Francis, B.A., Tannenbaum, A.R. (eds.) Feedback Control, Nonlinear Systems, and Complexity. LNCIS, vol. 202, pp. 196–214. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0027678CrossRefzbMATHGoogle Scholar
  20. 20.
    Nakamoto, M.: Parameter tuning of multiple PID controllers by using iterative feedback tuning. In: 2004 SICE 2003 Conference, IEEE, pp. 183–186. IEEE (2003)Google Scholar
  21. 21.
    Bruyne, F.D.: Iterative feedback tuning for internal model controllers. Control Eng. Pract. 11(9), 1043–1048 (2003)CrossRefGoogle Scholar
  22. 22.
    Tesch, D., Eckhard, D., Bazanella, A. S.: Iterative feedback tuning for cascade systems. In: 2017 Control Conference, pp. 495–500. IEEE (2017)Google Scholar
  23. 23.
    Ren, Q., Xu, J., Li, X.: A motion control approach for a robotic fish with iterative feedback tuning. In: 2015 IEEE International Conference on Industrial Technology, pp. 40–45. IEEE (2015)Google Scholar
  24. 24.
    Navalkar, S.T., Wingerden, J.W.V.: Iterative feedback tuning of an LPV Feedforward controller for wind turbine load alleviation. IFAC PapersOnLine 48(26), 207–212 (2015)CrossRefGoogle Scholar
  25. 25.
    Rădac, M.B., Precup, R.E., Petriu, E.M.: Stable iterative feedback tuning method for servo systems. In: 2011 IEEE International Symposium on Industrial Electronics, pp. 1943–1948. IEEE (2011)Google Scholar
  26. 26.
    Precup, R., Mosincat, I., Radac, M.: Experiments in iterative feedback tuning for level control of three-tank system. In: 2010 IEEE Mediterranean Electrotechnical Conference, Melecon 2010, pp. 564–569. IEEE (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Automation EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.Shanghai Key Laboratory of Power Station Automation TechnologyShanghai UniversityShanghaiChina

Personalised recommendations