Advertisement

Application of Intelligent Virtual Reference Feedback Tuning to Temperature Control in a Heat Exchanger

  • Yalan Wen
  • Ling WangEmail author
  • Weiqing Peng
  • Muhammad Ilyas Menhas
  • Lin Qian
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 924)

Abstract

Heat exchangers are frequently incorporated in industrial processes. Temperature control in heat exchangers is very important for the safety and economic benefits of the industrial system. However, it is still challenging to control the temperature of heat exchangers because of the complicated thermal dynamic phenomena. In this paper, an improved data-driven control method, i.e. intelligent virtual reference feedback tuning based on multi-population cooperative human learning optimization (IVFRT-MCHLO), is developed to design the optimal controller for a water heat exchanger. The controller is designed based on IVRFT method and a novel multi-population cooperative human learning optimization (MCHLO) algorithm is proposed to find out the optimal controller. The experimental results demonstrate that the proposed IVFRT-MCHLO has better control performance as the multi-population cooperation strategy of MCHLO improves the global search ability greatly.

Keywords

Heat exchanger Temperature control Human learning optimization Intelligent virtual reference feedback tuning Data-driven 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61633016 & 61703262), Key Project of Science and Technology Commission of Shanghai Municipality under Grant No. 16010500300 and 15220710400, Shanghai Sailing Program under Grant No. 16YF1403700, and Natural Science Foundation of Shanghai (No. 18ZR1415100).

References

  1. 1.
    May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006).  https://doi.org/10.1007/11823285_121CrossRefGoogle Scholar
  2. 2.
    Anxionnaz, Z., Cabassud, M., Gourdon, C., Tochon, P.: Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art. Chem. Eng. Process.: Process. Intensif. 47, 2029–2050 (2008)CrossRefGoogle Scholar
  3. 3.
    Tol, Hİ., Svendsen, S.: A comparative study on substation types and network layouts in connection with low-energy district heating systems. Energy Convers. Manag. 64, 551–561 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, Y., You, S., Zheng, W., Zhang, H., Zheng, X., Miao, Q.: State space model and robust control of plate heat exchanger for dynamic performance improvement. Appl. Therm. Eng. 128, 1588–1604 (2018)CrossRefGoogle Scholar
  5. 5.
    Dı́az, G., Sen, M., Yang, K., McClain, R.L.: Dynamic prediction and control of heat exchangers using artificial neural networks. Int. J. Heat Mass Transf. 44, 1671–1679 (2001)Google Scholar
  6. 6.
    Vasičkaninová, A., Bakošová, M., Čirka, Ľ., Kalúz, M., Oravec, J.: Robust controller design for a laboratory heat exchanger. Appl. Therm. Eng. 128, 1297–1309 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Yu, X., Liang, C., Zhang, Y.: Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils. Appl. Therm. Eng. 137, 758–766 (2018)CrossRefGoogle Scholar
  8. 8.
    Formentin, S., De Filippi, P., Corno, M., Tanelli, M., Savaresi, S.M.: Data-driven design of braking control systems. IEEE Trans. Control Syst. Technol. 21, 186–193 (2013)CrossRefGoogle Scholar
  9. 9.
    Formentin, S., Karimi, A.: Enhancing statistical performance of data-driven controller tuning via L2-regularization. Automatica 50, 1514–1520 (2014)CrossRefGoogle Scholar
  10. 10.
    Yan, P., Liu, D., Wang, D., Ma, H.: Data-driven controller design for general MIMO nonlinear systems via virtual reference feedback tuning and neural networks. Neurocomputing 171, 815–825 (2016)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Ni, H., Yang, R., Pardalos, P.M., Jia, L., Fei, M.: Intelligent virtual reference feedback tuning and its application to heat treatment electric furnace control. Eng. Appl. Artif. Intell. 46, 1–9 (2015)CrossRefGoogle Scholar
  12. 12.
    Sörensen, K., Sevaux, M., Glover, F.: A history of metaheuristics. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–18. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-07153-4_4-1CrossRefGoogle Scholar
  13. 13.
    Wang, L., Yang, R., Ni, H., Ye, W., Fei, M., Pardalos, P.M.: A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Appl. Soft Comput. 34, 736–743 (2015)CrossRefGoogle Scholar
  14. 14.
    Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica 38, 1337–1346 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    von Krogh, G.: Individualist and collectivist perspectives on knowledge in organizations: implications for information systems research. J. Strat. Inf. Syst. 18, 119–129 (2009)CrossRefGoogle Scholar
  16. 16.
    Hansen, M.T.: The search-transfer problem: the role of weak ties in sharing knowledge across organization subunits. Adm. Sci. Q. 44, 82–111 (1999)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Ni, H., Yang, R., Fei, M., Ye, W.: A simple human learning optimization algorithm. In: Fei, M., Peng, C., Su, Z., Song, Y., Han, Q. (eds.) LSMS/ICSEE 2014. CCIS, vol. 462, pp. 56–65. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45261-5_7CrossRefGoogle Scholar
  18. 18.
    Wang, L., Ni, H., Yang, R., Pardalos, P.M., Du, X., Fei, M.: An adaptive simplified human learning optimization algorithm. Inf. Sci. 320, 126–139 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Normey-Rico, J.E., Camacho, E.F.: Unified approach for robust dead-time compensator design. J. Process Control 19, 38–47 (2009)CrossRefGoogle Scholar
  20. 20.
    Åström, K.J., Hägglund, T.: Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14, 635–650 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, L., Yang, R., Pardalos, P.M., Qian, L., Fei, M.: An adaptive fuzzy controller based on harmony search and its application to power plant control. Int. J. Electr. Power Energy Syst. 53, 272–278 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yalan Wen
    • 1
  • Ling Wang
    • 1
    Email author
  • Weiqing Peng
    • 1
  • Muhammad Ilyas Menhas
    • 1
    • 2
  • Lin Qian
    • 1
    • 3
  1. 1.Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and AutomationShanghai UniversityShanghaiChina
  2. 2.Department of Electrical EngineeringMirpur University of Science and TechnologyMirpur A.K.Pakistan
  3. 3.Shanghai Power Construction Testing InstituteShanghaiChina

Personalised recommendations