A New Data Analytics Framework Emphasising Pre-processing in Learning AI Models for Complex Manufacturing Systems

  • Caoimhe M. CarberyEmail author
  • Roger Woods
  • Adele H. Marshall
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 924)


Recent emphasis has been placed on improving the processes in manufacturing by employing early detection or fault prediction within production lines. Whilst companies are increasingly including sensors to record observations and measurements, this brings challenges in interpretation as standard approaches for artificial intelligence (AI) do not highlight the presence of unknown relationships. To address this, we propose a new data analytics framework for predicting faults in a large-scale manufacturing system and validate it using a publicly available Bosch manufacturing dataset with a focus on pre-processing of the data.


  1. 1.
    Lee, J., Kao, H., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Proc. CIRP 16, 3–8 (2014)CrossRefGoogle Scholar
  2. 2.
    He, Q.P., Wang, J.: Statistical process monitoring as a big data analytics tool for smart manufacturing. J. Proc. Control 67, 35–43 (2017). Scholar
  3. 3.
    Susto, G., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Industr. Inf. 11(3), 812–820 (2015)CrossRefGoogle Scholar
  4. 4.
    Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. J. Prod. Manufact. Res. 4(1), 23–45 (2016). Scholar
  5. 5.
    Moldovan, D., Cioara, T., Anghel, I., Salomie, I.: Machine learning for sensor-based manufacturing processes. In: Intelligent Computer Communication and Processing (ICPP) 2017, pp. 147–154. IEEE (2017)Google Scholar
  6. 6.
    Zhang, D., Xu, B., Wood, J.: Predict failures in production lines. In: IEEE International Conference on Big Data, pp. 2070–2074. Washington, USA (2016)Google Scholar
  7. 7.
    Lee, K., Cheon, S., Kim, C.: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans. Semicond. Manufact. 25(5), 1167–1180 (2014)Google Scholar
  8. 8.
    Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised learning. Int. J. Comput. Sci. 1(2), 111–117 (2006)Google Scholar
  9. 9.
    Carbery, C.M., Woods, R. Marshall, A.H.: A Bayesian network based learning system for modelling faults in large-scale manufacturing. In: IEEE International Conference on Industrial Technology 2018, pp. 1357–1362. France (2018)Google Scholar
  10. 10.
    Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2009). Scholar
  11. 11.
    Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: 22nd International Proceedings on knowledge discovery and data mining, pp. 785–794. ACM (2016)Google Scholar
  12. 12.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Proc. Manag. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  13. 13. Bosch production line performance (2016). Accessed Nov 2017

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Caoimhe M. Carbery
    • 1
    • 2
    Email author
  • Roger Woods
    • 1
  • Adele H. Marshall
    • 2
  1. 1.Electronic Computer EngineeringQueen’s University BelfastBelfastUK
  2. 2.Mathematical Sciences Research CentreQueen’s University BelfastBelfastUK

Personalised recommendations