Advertisement

A Large-Scale Manufacturing Method to Produce Form Stable Composite Phase Change Materials (PCMs) for Thermal Energy Storage at Low and High Temperatures

  • Zhu Jiang
  • Guanghui Leng
  • Yulong DingEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 925)

Abstract

High performance Phase Change Materials (PCMs) play a vital role in Thermal Energy Storage (TES) technologies. A cost-effective and easy-controllable fabrication process by mix-sintering method is an effective approach to produce composite PCMs at a large scale. In this work, a series of form stable composite PCMs with different phase change temperatures were prepared by mix-sintering method. These composite PCMs could be applied in a cascading manner in thermal storage system. DSC measurements and analyses show that the cascading system has an energy storage density of 1068.96 J/g within a working temperature range from 50 °C to 550 °C. Besides, an SEM study shows homogenous microstructure of the prepared composite PCMs.

Keywords

Thermal energy storage Phase Change Materials Mix-sintering method Large-scale fabrication Cascading thermal storage system 

Notes

Acknowledgments

The authors gratefully acknowledge the financial supports from SGRI of China State Grid under Project: Establishment of research capability in thermal energy storage SGRI-DL-71-16-017.

References

  1. 1.
    Hasan, R., Mekhilef, S., Seyedmahmoudian, M., Horan, B.: Grid-connected isolated PV microinverters: a review. Renew. Sustain. Energy Rev. 67, 1065–1080 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Jin, Y., Huang, Y., Ye, F., Wang, X., Li, D., et al.: Principles and new development of thermal storage technology. Energy Storage Sci. Technol. 2, 69–72 (2013)Google Scholar
  3. 3.
    Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45, 1597–1615 (2004)CrossRefGoogle Scholar
  4. 4.
    Michels, H., Pitz-Paal, R.: Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007)CrossRefGoogle Scholar
  5. 5.
    Claar, T.D., Ong, E.T., Petri, R.J.: Composite salt/ceramic media for thermal energy storage applications. In: Proceedings of the Intersociety. Energy Conversion Engineering. Conference (United States), vol. 4, pp. 2043–2048 (1982)Google Scholar
  6. 6.
    Petri, R.J., Claar, T.D., Ong, E.T.: High-temperature salt/ceramic thermal storage phase-change media. In: Proceedings of the Intersociety. Energy Conversion Engineering. Conference (United States) (1983)Google Scholar
  7. 7.
    Petri, R.J., Ong, E.T., Marianowski, L.G.: High-temperature composite thermal energy storage for industrial applications (1985). https://www.osti.gov/scitech/biblio/6071974
  8. 8.
    Glück, A., Tamme, R., Kalfa, H., Streuber, C., Weichert, T.: Development and testing of advanced TES materials for solar central receiver plants (1991)Google Scholar
  9. 9.
    Hame, E., Taut, U., Grob, Y.: Salt ceramic thermal energy storage for solar thermal central receiver plants. In: Proceedings of the Solar World Congress (1991)Google Scholar
  10. 10.
    Gokon, N., Nakano, D., Inuta, S., Kodama, T.: High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol. Energy 82, 1145–1153 (2008)CrossRefGoogle Scholar
  11. 11.
    Ye, F., Ge, Z.: Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology 15, 56–60 (2014)CrossRefGoogle Scholar
  12. 12.
    Jiang, Z., et al.: Form-stable LiNO3–NaNO3–KNO3–Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage. Energy Convers. Manag. 106, 165–172 (2015)CrossRefGoogle Scholar
  13. 13.
    Jurado-Lasso, F., Jurado-Lasso, N., Ortiz, J., Jurado, J.F.: Thermal dielectric and Raman studies on the KNO3 compound high-temperature region. DYNA 83, 244 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.BCES Birmingham Centre of Energy StorageUniversity of BirminghamBirminghamUK

Personalised recommendations