Skip to main content

A Large-Scale Manufacturing Method to Produce Form Stable Composite Phase Change Materials (PCMs) for Thermal Energy Storage at Low and High Temperatures

  • Conference paper
  • First Online:
Advances in Green Energy Systems and Smart Grid (ICSEE 2018, IMIOT 2018)

Abstract

High performance Phase Change Materials (PCMs) play a vital role in Thermal Energy Storage (TES) technologies. A cost-effective and easy-controllable fabrication process by mix-sintering method is an effective approach to produce composite PCMs at a large scale. In this work, a series of form stable composite PCMs with different phase change temperatures were prepared by mix-sintering method. These composite PCMs could be applied in a cascading manner in thermal storage system. DSC measurements and analyses show that the cascading system has an energy storage density of 1068.96 J/g within a working temperature range from 50 °C to 550 °C. Besides, an SEM study shows homogenous microstructure of the prepared composite PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasan, R., Mekhilef, S., Seyedmahmoudian, M., Horan, B.: Grid-connected isolated PV microinverters: a review. Renew. Sustain. Energy Rev. 67, 1065–1080 (2017)

    Article  Google Scholar 

  2. Li, Y., Jin, Y., Huang, Y., Ye, F., Wang, X., Li, D., et al.: Principles and new development of thermal storage technology. Energy Storage Sci. Technol. 2, 69–72 (2013)

    Google Scholar 

  3. Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45, 1597–1615 (2004)

    Article  Google Scholar 

  4. Michels, H., Pitz-Paal, R.: Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007)

    Article  Google Scholar 

  5. Claar, T.D., Ong, E.T., Petri, R.J.: Composite salt/ceramic media for thermal energy storage applications. In: Proceedings of the Intersociety. Energy Conversion Engineering. Conference (United States), vol. 4, pp. 2043–2048 (1982)

    Google Scholar 

  6. Petri, R.J., Claar, T.D., Ong, E.T.: High-temperature salt/ceramic thermal storage phase-change media. In: Proceedings of the Intersociety. Energy Conversion Engineering. Conference (United States) (1983)

    Google Scholar 

  7. Petri, R.J., Ong, E.T., Marianowski, L.G.: High-temperature composite thermal energy storage for industrial applications (1985). https://www.osti.gov/scitech/biblio/6071974

  8. Glück, A., Tamme, R., Kalfa, H., Streuber, C., Weichert, T.: Development and testing of advanced TES materials for solar central receiver plants (1991)

    Google Scholar 

  9. Hame, E., Taut, U., Grob, Y.: Salt ceramic thermal energy storage for solar thermal central receiver plants. In: Proceedings of the Solar World Congress (1991)

    Google Scholar 

  10. Gokon, N., Nakano, D., Inuta, S., Kodama, T.: High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol. Energy 82, 1145–1153 (2008)

    Article  Google Scholar 

  11. Ye, F., Ge, Z.: Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology 15, 56–60 (2014)

    Article  Google Scholar 

  12. Jiang, Z., et al.: Form-stable LiNO3–NaNO3–KNO3–Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage. Energy Convers. Manag. 106, 165–172 (2015)

    Article  Google Scholar 

  13. Jurado-Lasso, F., Jurado-Lasso, N., Ortiz, J., Jurado, J.F.: Thermal dielectric and Raman studies on the KNO3 compound high-temperature region. DYNA 83, 244 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from SGRI of China State Grid under Project: Establishment of research capability in thermal energy storage SGRI-DL-71-16-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Leng, G., Ding, Y. (2018). A Large-Scale Manufacturing Method to Produce Form Stable Composite Phase Change Materials (PCMs) for Thermal Energy Storage at Low and High Temperatures. In: Li, K., Zhang, J., Chen, M., Yang, Z., Niu, Q. (eds) Advances in Green Energy Systems and Smart Grid. ICSEE IMIOT 2018 2018. Communications in Computer and Information Science, vol 925. Springer, Singapore. https://doi.org/10.1007/978-981-13-2381-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2381-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2380-5

  • Online ISBN: 978-981-13-2381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics