The Electrochemical Performance and Applications of Several Popular Lithium-ion Batteries for Electric Vehicles - A Review

  • Xuan LiuEmail author
  • Kang Li
  • Xiang Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 925)


The Lithium-ion battery is one of the most common batteries used in Electric Vehicles (EVs) due to the specific features of high energy density, power density, long life span and environment friendly. With the development of lithium-ion battery technology, different materials have been adopted in the design of the cathodes and anodes in order to gain a better performance. \(LiMn_{2}O_{4}\), \(LiNiMnCoO_{2}\), \(LiNiCoAlO_{2}\), \(LiFePO_{4}\) and \(Li_{4}Ti_{5}O_{12}\) are five common lithium-ion batteries adopted in commercial EVs nowadays. The characteristics of these five lithium-ion batteries are reviewed and compared in the aspects of electrochemical performance and their practical applications.


LMO NMC NCA LFP LTO Lithium-ion battery Electrochemical performance 



Xuan Liu would like to thank The Department for the Economy Northern Ireland and W-Tec Centre, Queen’s University Belfast for sponsoring his research.


  1. 1.
    Campanari, S., Manzolini, G., Garcia De la Iglesia, F.: Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J. Power Sour. 186(2), 464–477 (2009)CrossRefGoogle Scholar
  2. 2.
    Williamson, S.S., Emadi, A.: Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE Trans. Veh. Technol. 54(3), 856–862 (2005)CrossRefGoogle Scholar
  3. 3.
    Sandberg, U., Goubert, L., Mioduszewski, P.: Are vehicles driven in electric mode so quiet that they need acoustic warning signals. In 20th International Congress on Acoustics (2010)Google Scholar
  4. 4.
    Japan JASIC. A study on approach warning systems for hybrid vehicle in motor mode. Informal document No. GRB-49-10, 49th GRB (2009)Google Scholar
  5. 5.
    Wang, Q., Jiang, B., Li, B., Yan, Y.: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106–128 (2016)CrossRefGoogle Scholar
  6. 6.
    Hua, A.C.C., Syue, B.Z.W.: Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. In: 2010 International Power Electronics Conference (IPEC), pp. 1478–1483. IEEE (2010)Google Scholar
  7. 7.
    Ruetschi, P.: Review on the lead-acid battery science and technology. J. Power Sources 2(1), 3–120 (1977)CrossRefGoogle Scholar
  8. 8.
    Hadjipaschalis, I., Poullikkas, A., Efthimiou, V.: Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13(6–7), 1513–1522 (2009)CrossRefGoogle Scholar
  9. 9.
    Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017)CrossRefGoogle Scholar
  10. 10.
    Languang, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)CrossRefGoogle Scholar
  11. 11.
    Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)CrossRefGoogle Scholar
  12. 12.
    Thackeray, M.M., Johnson, P.J., De Picciotto, L.A., Bruce, P.G., Goodenough, J.B.: Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19(2), 179–187 (1984)CrossRefGoogle Scholar
  13. 13.
    Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18(4), 461–472 (1983)CrossRefGoogle Scholar
  14. 14.
    Choa, J., Thackeray, M.M.: Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling. J. Electrochem. Soc. 146(10), 3577–3581 (1999)CrossRefGoogle Scholar
  15. 15.
    Lazzari, M., Scrosati, B.: A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127(3), 773–774 (1980)CrossRefGoogle Scholar
  16. 16.
    Guo, D., et al.: Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries. J. Alloys Compd. 632, 222–228 (2015)CrossRefGoogle Scholar
  17. 17.
    Ouyang, C.Y., Shi, S.Q., Wang, Z.X., Li, H., Huang, X.J., Chen, L.Q.: Ab initio molecular-dynamics studies on LixMn2O4 as cathode material for lithium secondary batteries. EPL (Europhysics Letters) 67(1), 28 (2004)CrossRefGoogle Scholar
  18. 18.
    Li, D.-C., Muta, T., Zhang, L.-Q., Yoshio, M., Noguchi, H.: Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources 132(1–2), 150–155 (2004)CrossRefGoogle Scholar
  19. 19.
    Dolotko, O., Senyshyn, A., Mühlbauer, M.J., Nikolowski, K., Ehrenberg, H.: Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. J. Power Sources 255, 197–203 (2014)CrossRefGoogle Scholar
  20. 20.
    Choi, J., Manthiram, A.: Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/ 3Mn1/ 3Co1/ 3O2 cathodes. J. Electrochem. Soc. 152(9), A1714–A1718 (2005)CrossRefGoogle Scholar
  21. 21.
    Ohzuku, T., Makimura, Y.: Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem. Lett. 30(8), 744–745 (2001)CrossRefGoogle Scholar
  22. 22.
    Tran, H.Y., Greco, G., Täubert, C., Wohlfahrt-Mehrens, M., Haselrieder, W., Kwade, A.: Influence of electrode preparation on the electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 composite electrodes for lithium-ion batteries. J. Power Sources 210, 276–285 (2012)CrossRefGoogle Scholar
  23. 23.
    Kim, G.-Y., Dahn, J.R.: Effects of electrode density on the safety of NCA positive electrode for Li-ion batteries. J. Electrochem. Soc. 160(8), A1108–A1111 (2013)CrossRefGoogle Scholar
  24. 24.
    Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)CrossRefGoogle Scholar
  25. 25.
    Ohzuku, T., Ueda, A., Yamamoto, N.: Zero-strain insertion material of Li [Li1/3Ti5/3] o 4 for rechargeable lithium cells. J. Electrochem. Soc. 142(5), 1431–1435 (1995)CrossRefGoogle Scholar
  26. 26.
    Guyomard, D., Tarascon, J.M.: Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization. J. Electrochem. Soc. 139(4), 937–948 (1992)CrossRefGoogle Scholar
  27. 27.
    Potapenko, A.V., Kirillov, S.A.: Lithium manganese spinel materials for high-rate electrochemical applications. J. Energy Chem. 23(5), 543–558 (2014)CrossRefGoogle Scholar
  28. 28.
    Tu, J., Zhao, X.B., Zhuang, D.G., Cao, G.S., Zhu, T.J., Tu, J.P.: Studies of cycleability of LiMn2O4 and LiLa0. 01Mn1. 99O4 as cathode materials for Li-ion battery. Physica B: Condens. Matter 382(1–2), 129–134 (2006)CrossRefGoogle Scholar
  29. 29.
    Tang, W., et al.: Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J. Power Sources 198, 308–311 (2012)CrossRefGoogle Scholar
  30. 30.
    Amine, K., Tukamoto, H., Yasuda, H., Fujita, Y.: A new three-volt spinel Li1+ x Mn1. 5Ni0. 5 O 4 for secondary lithium batteries. J. Electrochem. Soc. 143(5), 1607–1613 (1996)CrossRefGoogle Scholar
  31. 31.
    Strobel, P., Palos, A.I., Anne, M., Le Cras, F.: Structural, magnetic and lithium insertion properties of spinel-type Li2Mn3MO8 oxides (m= Mg, Co, Ni, Cu). J. Mater. Chem. 10(2), 429–436 (2000)CrossRefGoogle Scholar
  32. 32.
    Morales, J., Sánchez, L., Tirado, J.L.: New doped Li-M-Mn-O (M= Al, Fe, Ni) spinels as cathodes for rechargeable 3 V lithium batteries. J. Solid State Electrochem. 2(6), 420–426 (1998)CrossRefGoogle Scholar
  33. 33.
    Wagemaker, M., Ooms, F.G.B., Kelder, E.M., Schoonman, J., Mulder, F.M.: Extensive migration of Ni and Mn by lithiation of ordered LiMg0. 1Ni0. 4Mn1. 5O4 spinel. J. Am. Chem. Soc. 126(41), 13526–13533 (2004)CrossRefGoogle Scholar
  34. 34.
    Liu, G.Q., Wen, L., Liu, Y.M.: Spinel LiNi\(_{0.5}\)Mn\(_{1.5}\)O\(_{4}\) and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 14(12), 2191–2202 (2010)CrossRefGoogle Scholar
  35. 35.
    Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)CrossRefGoogle Scholar
  36. 36.
    Park, S.H., Yoon, C.S., Kang, S.G., Kim, H.-S., Moon, S.-I., Sun, Y.-K.: Synthesis and structural characterization of layered Li [Ni1/3Co1/3Mn1/3] O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta 49(4), 557–563 (2004)CrossRefGoogle Scholar
  37. 37.
    Sun, Y., Ouyang, C., Wang, Z., Huang, X., Chen, L.: Effect of co content on rate performance of limn0. 5- x Co2x Ni0. 5- x O 2 cathode materials for lithium-ion batteries. J. Electrochem. Soc. 151(4), A504–A508 (2004)CrossRefGoogle Scholar
  38. 38.
    Santhanam, R., Rambabu, B.: Improved high rate cycling of Li-rich Li1. 10Ni1/3Co1/3Mn1/3O2 cathode for lithium batteries. Int. J. Electrochem. Sci. 4(12), 1770–1778 (2009)Google Scholar
  39. 39.
    Yabuuchi, N., Ohzuku, T.: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 119, 171–174 (2003)CrossRefGoogle Scholar
  40. 40.
    Myung, S.T., Cho, M.H., Hong, H.T., Kang, T.H., Kim, C.S.: Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1. 1Mn1. 9O4 and Lini0. 8Co0. 15Al0. 05O2. J. Power Sources 146(1–2), 222–225 (2005)CrossRefGoogle Scholar
  41. 41.
    Takahashi, M., Tobishima, S., Takei, K., Sakurai, Y.: Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J. Power Sources 97, 508–511 (2001)CrossRefGoogle Scholar
  42. 42.
    Andersson, A.S., Kalska, B., Häggström, L., Thomas, J.O.: Lithium extraction/insertion in LiFePO4: an x-ray diffraction and mössbauer spectroscopy study. Solid State Ionics 130(1–2), 41–52 (2000)CrossRefGoogle Scholar
  43. 43.
    Barker, J., Saidi, M.Y., Swoyer, J.L.: Lithium iron (ii) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid-State Lett. 6(3), A53–A55 (2003)CrossRefGoogle Scholar
  44. 44.
    Shin, H.C., Cho, W.I., Jang, H.: Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J. Power Sources 159(2), 1383–1388 (2006)CrossRefGoogle Scholar
  45. 45.
    Huang, Y., Ren, H., Yin, S., Wang, Y., Peng, Z., Zhou, Y.: Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method. J. Power Sources 195(2), 610–613 (2010)CrossRefGoogle Scholar
  46. 46.
    Ferg, E., Gummow, R.J., De Kock, A., Thackeray, M.M.: Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141(11), L147–L150 (1994)CrossRefGoogle Scholar
  47. 47.
    Belharouak, I., Koenig Jr., G.M., Amine, K.: Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J. Power Sources 196(23), 10344–10350 (2011)CrossRefGoogle Scholar
  48. 48.
    Lai, C., Dou, Y.Y., Li, X., Gao, X.P.: Improvement of the high rate capability of hierarchical structured Li4Ti5O12 induced by the pseudocapacitive effect. J. Power Sources 195(11), 3676–3679 (2010)CrossRefGoogle Scholar
  49. 49.
    Battery Universtiy. Bu-205: Types of lithium-ion. Accessed 01 Apr 2018
  50. 50.
    Levy, S.C., Bro, P.: Battery hazards and accident prevention of cell components with the thermal behavior of a complete cell (1994)Google Scholar
  51. 51.
    Xia, Y., Zhou, Y., Yoshio, M.: Capacity fading on cycling of 4 V Li/LiMn2 O 4 cells. J. Electrochem. Soc. 144(8), 2593–2600 (1997)CrossRefGoogle Scholar
  52. 52.
    Wang, Q., Sun, J., Chen, C.: Thermal stability of delithiated LiMn2O4 with electrolyte for lithium-ion batteries. J. Electrochem. Soc. 154(4), A263–A267 (2007)CrossRefGoogle Scholar
  53. 53.
    Bodenes, L., et al.: Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J. Power Sources 236, 265–275 (2013)CrossRefGoogle Scholar
  54. 54.
    Golubkov, A.W., et al.: Thermal-runaway experiments on consumer li-ion batteries with metal-oxide and olivin-type cathodes. RSC. Adv. 4(7), 3633–3642 (2014)CrossRefGoogle Scholar
  55. 55.
    Wen, J., Yan, Y., Chen, C.: A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express 2(3), 197–212 (2012)CrossRefGoogle Scholar
  56. 56.
    Andrey, W., et al.: Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge. RSC. Adv. 5(70), 57171–57186 (2015)CrossRefGoogle Scholar
  57. 57.
    Belharouak, I., Wenquan, L., Vissers, D., Amine, K.: Safety characteristics of Li (Ni0. 8Co0. 15Al0. 05) O2 and Li (Ni1/3Co1/3Mn1/3) O2. Electrochem. Commun. 8(2), 329–335 (2006)CrossRefGoogle Scholar
  58. 58.
    Yoon, W.S., Chung, K.Y., McBreen, J., Yang, X.Q.: A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0. 8Co0. 15Al0. 05O2 during first charge using in situ XRD. Electrochem. Commun. 8(8), 1257–1262 (2006)CrossRefGoogle Scholar
  59. 59.
    Bak, S.M., et al.: Structural changes and thermal stability of charged lini x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6(24), 22594–22601 (2014)CrossRefGoogle Scholar
  60. 60.
    Chen, K., Li, X.: Accurate determination of battery discharge characteristics-a comparison between two battery temperature control methods. J. Power Sources 247, 961–966 (2014)CrossRefGoogle Scholar
  61. 61.
    Zhang, Y., Wang, C.-Y., Tang, X.: Cycling degradation of an automotive LiFePO4 lithium-ion battery. J. Power Sources 196(3), 1513–1520 (2011)CrossRefGoogle Scholar
  62. 62.
    Dubarry, M., et al.: Identifying battery aging mechanisms in large format Li ion cells. J. Power Sources 196(7), 3420–3425 (2011)CrossRefGoogle Scholar
  63. 63.
    Mayza, A.B., et al.: Thermal characterization of LiFepO4 cathode in lithium ion cells. ECS Trans. 35(34), 177–183 (2011)CrossRefGoogle Scholar
  64. 64.
    Huang, P., et al.: Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl. Energy 183, 659–673 (2016)CrossRefGoogle Scholar
  65. 65.
    Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., Van Mierlo, J.: Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 10(9), 1314 (2017)CrossRefGoogle Scholar
  66. 66.
    Deng, D.: Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3(5), 385–418 (2015)CrossRefGoogle Scholar
  67. 67.
    Mekonnen, Y., Sundararajan, A., Sarwat, A.I.: A review of cathode and anode materials for lithium-ion batteries. In: SoutheastCon, 2016, pp. 1–6. IEEE (2016)Google Scholar
  68. 68.
    Smekens, J., et al.: Influence of electrode density on the performance of Li-ion batteries: experimental and simulation results. Energies 9(2), 104 (2016)CrossRefGoogle Scholar
  69. 69.
    Pillot, C.: The rechargeable battery market and main trends 2014–2025. In: 31st International Battery Seminar & Exhibit (2015)Google Scholar
  70. 70.
    Lebedeva, N., De Periso, F., Boon-Brett, L.: Lithium ion battery value chain and related opportunities for europe. European Commission, Petten (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations