Skip to main content

Production of Biofuel from Microalgae

  • Chapter
  • First Online:
  • 709 Accesses

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

Production of biofuel from microalgae is presented in this chapter. Biochemical Conversion (Anaerobic Digestion; Alcoholic Fermentation; Hydrogen production; Biodiesel production) and thermochemical conversion (Gasification; Hydrothermal liquefaction; Hydrothermal carbonization; Pyrolysis) processes are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankter fatty acids. J Fish Res Board Can 25:1603–1620

    Article  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  Google Scholar 

  • Bala K, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manag 88:1228–1244

    Article  Google Scholar 

  • Banerjee A, Harma RS, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  Google Scholar 

  • Barnwal B, Sharma M (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378

    Article  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels, Frontiers in bioengineering and biotechnology. Mar Biotechnol 90(2):1–13

    Google Scholar 

  • Benemann JR, Pursoff P, Oswald WJ (1978) Engineering design and cost analysis of a large-scale microalgae biomass system. NTIS#H CP/T1605–01 UC-61. US Department of Energy, Washington DC

    Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  Google Scholar 

  • Biomass R&D (2002) Technical advisory committee. Roadmap for biomass technologies in the United States, Washington, DC, USA. Available online: www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf

  • Bridgwater A (2007) IEA bioenergy 27th update. Biomass pyrolysis, biomass and bioenergy, vol 31. Pergamon-Elsevier Science Ltd., England

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73

    Article  Google Scholar 

  • Burlew S (1953) Algal culture: from laboratory to pilot plant (publication no. 600). Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454

    Article  Google Scholar 

  • Campanella A, Muncrief R, Harold MP, Griffith DC, Whitton NM, Weber RS (2012) Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: bio-oil yield and compositional effects. Bioresour Technol 109:154–162

    Article  Google Scholar 

  • Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 2015(140):14–19

    Article  Google Scholar 

  • Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  Google Scholar 

  • Chen CY, Chang HY, Chang JS (2016) Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int J Hydrog Energy 41:4413–4420

    Article  Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Clark JH, Deswarte F (2015) Introduction to chemicals from biomass. Wiley, Hoboken

    Google Scholar 

  • Cohen E, Koren A, Arad SM (1991) A closed system for outdoor cultivation of microalgae. Biomass Bioenergy 1:83–88

    Article  Google Scholar 

  • Collyer DM, Fogg GE (1955) Studies of fat accumulation by algae. J Exp Bot 6:256–275

    Article  Google Scholar 

  • Coombs J, Darley WM, Holm-Hansen O, Volcani BE (1967) Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon starvation. Plant Physiol 42:1601–1606

    Article  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  Google Scholar 

  • Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646

    Article  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  Google Scholar 

  • Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Source Part A 28:933–940

    Article  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18

    Article  Google Scholar 

  • Demirbas A (2010a) Thermochemical processes. In: Biorefineries. Green energy and technology. Springer, London

    Google Scholar 

  • Demirbas A (2010b) Energy from algae, green energy and technology. Springer, London

    Google Scholar 

  • Demirbas MF (2010c) Microalgae as a feedstock for biodiesel. Energy Educ Sci Technol Part A 25:31–43

    Google Scholar 

  • Demirbas A (2010d) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  Google Scholar 

  • Demirbas A, Demirbas F (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 53:163–170. https://doi.org/10.1016/j.enconman.2010.06.055

    Article  MATH  Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    Article  Google Scholar 

  • Du Z (2013) Thermochemical conversion of microalgae for biofuel production. Published doctoral dissertation, University of Minnesota, Twin Cities

    Google Scholar 

  • Du Z, Mohr M, Ma X, Cheng Y, Lin X, Liu Y, Zhou W, Chen P, Ruan R, Bioresource Technology (2012) Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour Technol 120:13–18

    Article  Google Scholar 

  • Duan PG, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61

    Article  Google Scholar 

  • Dudeja S, Bhattacherjee AB, Chela-Flores J (2012) Antarctica as model for the possible emergence of life on Europa. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin and life in extreme habitats and astrobiology. Springer, Dordrecht

    Google Scholar 

  • Ebadi AG, Hisoriev H, Zarnegar M, Ahmadi H (2018) Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds. Environ Technol 2:1–7. https://doi.org/10.1080/09593330.2017.1417495

    Article  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772–12798

    Article  Google Scholar 

  • Fermoso J, Coronado JM, Serrano DP, Pizarro P (2017) Pyrolysis of microalgae for fuel production. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels bioprod. Woodhead Publishing/Elsevier, Duxford, pp 259–282

    Chapter  Google Scholar 

  • Filipkowska A, Lubecki L, Szymczak-Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 2001(92):405–416

    Article  Google Scholar 

  • Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177

    Article  Google Scholar 

  • Gonzalez-Fernandez C, Mandy A, Ballesteros I, Ballesteros M (2016) Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int Biodeterior Biodegrad 106:16–23

    Article  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  Google Scholar 

  • Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517

    Article  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  Google Scholar 

  • Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882

    Article  Google Scholar 

  • Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290

    Article  Google Scholar 

  • Hernandez D, Riano B, Coca M, Solana M, Bertucco A, Garcia-Gonzalez MC (2016) Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J 285:449–458

    Article  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Article  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 2013(135):191–198

    Article  Google Scholar 

  • Hönig V, Kotek M, Mařík J (2014) Use of butanol as a fuel for internal combustion engines. Agron Res 12(2):333–340

    Google Scholar 

  • Hromádko J, Hromádko J, Miler P, Hönig V, Štěrba P (2011) The use of bioethanol in internal combustion engines. Chemické listy 105(2):122–128 (in Czech)

    Google Scholar 

  • Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482

    Article  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and microalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  Google Scholar 

  • Lakaniemi AM, Tuovinen OH, Puhakka JA (2013) Anaerobic conversion of microalgal biomass to sustainable energy carriers – a review. Bioresour Technol 135:222–231

    Article  Google Scholar 

  • Leite GB, Abdelaziz AE, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141

    Article  Google Scholar 

  • Leng L, Li J, Wen Z, Zhou W (2018) Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour Technol 256:529–542

    Article  Google Scholar 

  • Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  MathSciNet  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    Google Scholar 

  • Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013(6):3937–3950

    Article  Google Scholar 

  • Meier RL (1955) Biological cycles in the transformation of solar energy into useful fuels. In: Daniels F, Duffie JA (eds) Solar energy research. University of Wisconsin Press, Madison, pp 179–183

    Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials – a review. Bioresour Technol 68:71–77

    Article  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  Google Scholar 

  • Mendez L, Mahdy A, Ballesteros M, Gonzalez-Fernandez C (2014) Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads. Appl Energy 129:238–242

    Article  Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  Google Scholar 

  • Miao XL, Wu QY, Yang CY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863

    Article  Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Article  Google Scholar 

  • Minowa T, Yokoyama SY, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    Article  Google Scholar 

  • Miyake J (1990) Application of photosynthetic systems for energy conversion. In: Veziroglu TN, Takahashi PK (eds) Hydrogen energy progress. VIII. Proceedings 8th WHEC. Elsevier, New York, pp 755–764

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  • Mužíková Z, Pospíšil M, Šebor G (2010) The use of bioethanol as a fuel in the form of E85 fuel. Chemické listy 104(7):678–683 (in Czech)

    Google Scholar 

  • Nichols BW (1965) Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta 106:274–279

    Article  Google Scholar 

  • Ogi T, Yokoyama S, Minowa T, Dote Y (1990) Role of butanol solvent in direct liquefaction of wood. Sekiyu Gakkashi (J Japan Petr Inst) 33:383–389

    Article  Google Scholar 

  • Oswald WJ, Golueke C (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  Google Scholar 

  • Pan P, Hu CW, Yang WY, Li YS, Dong LL, Zhu LF, Tong DM, Qing RW, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp residue for renewable bio-oils. Bioresour Technol 101:4593–4599

    Article  Google Scholar 

  • Peng WM, Wu QY, Tu PG (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12:147–152

    Article  Google Scholar 

  • Peng WM, Wu QY, Tu PG (2001) Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J Appl Phycol 13:5–12

    Article  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  • Pogaku R (2015) Advances in bioprocess technology. Springer, Cham

    Google Scholar 

  • Pohl P, Wagner H (1972) Control of fatty acid and lipid biosynthesis in Euglena gracilis by ammonia, light and DCMU. Z Naturforsch 27:53–61

    Article  Google Scholar 

  • Prabandono K, Amin S (2015) Production of biomethane from marine microalgae. In: Kim SK, Lee CG (eds) Marine bioenergy: trends and developments. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171

    Article  Google Scholar 

  • Radakovits RRE, Jinkerson A, Darzins C (2010) Posewitz, genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(2010):486–501

    Article  Google Scholar 

  • Raheem A, Wan Azlina KG, Taufiq Yap YH, Danquah MK, Harun R (2015) Thermochemical conversion of microalgal biomass for biofuel production. Renew Sust Energ Rev 49:990–999

    Article  Google Scholar 

  • Researchers convert algae to butanol Fuel can be used in automobiles. States News Service, March 1 2011 Issue www.newswise.com/.../researchers-convert-algae-to-butanol-fuel-can-be-used-in-auto

  • Rosenberg A, Gouaux J (1967) Quantitative and compositional changes in monogalactosyl and digalactosyl diglycerides during light-induced formation of chloroplasts in Euglena gracilis. J Lipid Res 8:80–83

    Google Scholar 

  • Saifullah AZA, Karim Md A, Ahmad-Yazid A (2014) Microalgae: an alternative source of renewable energy. Am J Eng Res 3(3):330–338

    Google Scholar 

  • Sawayama S, Inoue S, Yokoyama S (1994) Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 41:729–731

    Article  Google Scholar 

  • Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Šebor G, Pospíšil M, Žákovec J (2006) Technical and economic analysis of suitable alternative transport fuels, research report prepared for the Ministry of Transport, ICHT Prague, June 2006. [online]. [cit. – 2012-11-09], available from: http://www.mdcr.cz/cs/Strategie/Zivotni_prostred

  • Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep (Amst) 14:63–69

    Article  Google Scholar 

  • Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215. https://doi.org/10.3390/ijms18010215

    Article  Google Scholar 

  • Singh L, Kalia VC (2017) Waste biomass management – a holistic approach. Springer, Cham

    Book  Google Scholar 

  • Singh A, Rathore D (2017) Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi

    Book  Google Scholar 

  • Soeder CJ (1986) A historical outline of applied algology. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 25–41

    Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149

    Article  Google Scholar 

  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2:535–541

    Article  Google Scholar 

  • Takacˇova A, Mackul’ak T, Smolinska M, Hutˇnan M, Olejnikova P (2012) Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chem Pap 66(2):129–137

    Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petr Inst 48:251–259

    Article  Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Article  Google Scholar 

  • Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018) Bioremediation: applications for environmental protection and management. Springer, Singapore

    Book  Google Scholar 

  • Wan YQ, Chen P, Zhang B, Yang CY, Liu YH, Lin XY, Ruan R (2009) Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrolysis 86:161–167

    Article  Google Scholar 

  • Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Factories 17(22):1–16. https://doi.org/10.1186/s12934-018-0871-5

    Article  Google Scholar 

  • Wang Y, Guo W, Chen BY, Cheng CL, Lo YC, Ho SH, Chang JS, Ren N (2015) Exploring the inhibitory characteristics of acid hydrolysates upon butanol fermentation: a toxicological assessment. Bioresour Technol 198:571–576

    Article  Google Scholar 

  • Werner D (1966) Die Kieselsaure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin and Guilard. Arch Mikrobiol 55:278–308

    Article  Google Scholar 

  • Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440

    Article  Google Scholar 

  • Yang M (2015) The use of lignocellulosic biomass for fermentative butanol production in biorefining processes. Dissertationes Forestales. https://doi.org/10.14214/df.202

  • Yang YF, Feng CP, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recycl 43:21–33

    Article  Google Scholar 

  • Yu F, Ruan R, Steele P (2008) Consecutive reaction model for the pyrolysis of corn cob. Trans ASABE 51:1023–1028

    Article  Google Scholar 

  • Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Chang JS (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11. https://doi.org/10.1016/j.biortech.2017.08.009

    Article  Google Scholar 

  • Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod Biorefin 9:801–814

    Article  Google Scholar 

  • Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sust Energ Rev 30:1035–1046

    Article  Google Scholar 

  • Zou SP, Wu YL, Yang MD, Li C, Tong JM (2009) Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuel 23:3753–3758

    Article  Google Scholar 

  • www.mdpi.com

  • conservancy.umn.edu

  • en.wikipedia.org

  • onlinelibrary.wiley.com

  • digitalcommons.usu.edu

  • microbewiki.kenyon.edu

  • www.fona.de

  • www.ncbi.nlm.nih.gov

  • www.yesitekhob.com

  • econpapers.repec.org

  • eprints.qut.edu.au

  • www.assb.pl

  • d-nb.info

  • pdfs.semanticscholar.org

  • archive.org

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2019). Production of Biofuel from Microalgae. In: Third Generation Biofuels. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-2378-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2378-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2377-5

  • Online ISBN: 978-981-13-2378-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics