Skip to main content

A Novel Approach for Image Fusion with Guided Filter Based on Feature Transform

  • Conference paper
  • First Online:
Communication, Networks and Computing (CNC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 839))

Included in the following conference series:

  • 999 Accesses

Abstract

A quick and successful multi-center picture combination strategy is proposed for making a very educational intertwined picture through consolidating at least two pictures. The proposed technique depends on a two-scale decay of a picture into a base layer containing extensive scale varieties in force, and a detail layer catching little scale points of interest. A proposed GFF-FT (Guided-Filtering Fusion with Feature Transform) based weighted normal strategy is proposed to make full utilization of spatial consistency for combination of the base and detail layers. We propose depicting input pictures by SIFT descriptors. Filter descriptors are removed from the first pictures on premise of surface, shading and shape. The weighted normal method is execute based on SIFT include descriptors. Test comes about show that the proposed strategy can acquire best in class execution for combination of multi-center pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., Zhang, L.: Robust multi-exposure image fusion: a structural patch decomposition approach. IEEE Trans. Image Process. 26(5), 2519–2532 (2017)

    Article  MathSciNet  Google Scholar 

  2. Li, S., Kang, X., Hu, J.: Image fusion with guided filtering. IEEE Trans. Image Process. 22(7), 2864–2875 (2013)

    Article  Google Scholar 

  3. Savić, S., Babić, Z.: Multifocus image fusion based on empirical mode decomposition. In: 19th IEEE International Conference on Systems, Signals and Image Processing (IWSSIP) (2012)

    Google Scholar 

  4. Socolinsky, D.A., Wolff, L.B.: Multispectral image visualization through first-order fusion. IEEE Trans. Image Process. 11(8), 923–931 (2013)

    Article  Google Scholar 

  5. Shen, R., Cheng, I., Shi, J., Basu, A.: Generalized random walks for fusion of multi-exposure images. IEEE Trans. Image Process. 20(12), 3634–3646 (2012)

    Article  MathSciNet  Google Scholar 

  6. Li, S., Kwok, J., Tsang, I., Wang, Y.: Fusing images with different focuses using support vector machines. IEEE Trans. Neural Netw. 15(6), 1555–1561 (2004)

    Article  Google Scholar 

  7. Pajares, G., de la Cruz, J.M.: A wavelet-based image fusion tutorial. Pattern Recognit. 37(9), 1855–1872 (2004)

    Article  Google Scholar 

  8. Looney, D., Mandic, D.P.: Multimodel image fusion using complex extensions of EMD. IEEE Trans. Sig. Process. 57(4), 1626–1630 (2013)

    Article  Google Scholar 

  9. Kumar, M., Dass, S.: A total variation-based algorithm for pixel-level image fusion. IEEE Trans. Image Process. 18(9), 2137–2143 (2009)

    Article  MathSciNet  Google Scholar 

  10. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  11. Rockinger, O.: Image sequence fusion using a shift-invariant wavelet transform. In: Proceedings of International Conference on Image Process, Washington, DC, USA, vol. 3, October 1997

    Google Scholar 

  12. Liang, J., He, Y., Liu, D., Zeng, X.: Image fusion using higher order singular value decomposition. IEEE Trans. Image Process. 21(5), 2898–2909 (2012)

    Article  MathSciNet  Google Scholar 

  13. Xu, M., Chen, H., Varshney, P.: An image fusion approach based on markov random fields. IEEE Trans. Geosci. Remote Sens. 49(12), 5116–5127 (2011)

    Article  Google Scholar 

  14. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  15. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67-1–67-10 (2008)

    Article  Google Scholar 

  16. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002)

    Article  Google Scholar 

  17. Draper, N., Smith, H.: Applied Regression Analysis. Wiley, New York (1981)

    MATH  Google Scholar 

  18. Petrović, V.: Subjective tests for image fusion evaluation and objective metric validation. Inf. Fusion 8(2), 208–216 (2007)

    Article  Google Scholar 

  19. Piella, G.: Image fusion for enhanced visualization: a variational approach. Int. J. Comput. Vis. 83, 1–11 (2009)

    Article  Google Scholar 

  20. Li, S., Kang, X., Hu, J., Yang, B.: Image matting for fusion of multi-focus images in dynamic scenes. Inf. Fusion 14(2), 147–162 (2013)

    Article  Google Scholar 

  21. Tessens, L., Ledda, A., Pizurica, A., Philips, W.: Extending the depth of field in microscopy through curvelet-based frequency-adaptive image fusion. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, April 2007

    Google Scholar 

  22. Zhang, Q., Guo, B.: Multifocus image fusion using the nonsubsampled contourlet transform. Sig. Process. 89(7), 1334–1346 (2009)

    Article  Google Scholar 

  23. Tian, J., Chen, L.: Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure. Sig. Process. 92(9), 2137–2146 (2012)

    Article  Google Scholar 

  24. Hossny, M., Nahavandi, S., Creighton, D.: Comments on information measure for performance of image fusion. Electron. Lett. 44(18), 1066–1067 (2008)

    Article  Google Scholar 

  25. Yang, C., Zhang, J., Wang, X., Liu, X.: A novel similarity based quality metric for image fusion. Inf. Fusion 9(2), 156–160 (2008)

    Article  Google Scholar 

  26. Cvejic, N., Loza, A., Bull, D., Canagarajah, N.: A similarity metric for assessment of image fusion algorithms. Int. J. Sig. Process. 2(3), 178–182 (2005)

    Google Scholar 

  27. Xydeas, C., Petrović, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

  28. Zhao, J., Laganiere, R., Liu, Z.: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 3(6), 1433–1447 (2007)

    Google Scholar 

  29. Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., Wu, W.: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 94–109 (2012)

    Article  Google Scholar 

  30. Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electron. Lett. 38(7), 313–315 (2002)

    Article  Google Scholar 

  31. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.: A universal image quality index. IEEE Sig. Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  33. Crow, F.C.: Summed-area tables for texture mapping. In: Proceedings of SIGGRAPH 1984, 11th Annual Conference on Computer Graphics and Interactive Techniques, vol. 18, no. 3, pp. 207–212, January 1984

    Google Scholar 

  34. www.matlab.com

  35. www.Plagiarismchecker.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathi, K., Sharma, A. (2019). A Novel Approach for Image Fusion with Guided Filter Based on Feature Transform. In: Verma, S., Tomar, R., Chaurasia, B., Singh, V., Abawajy, J. (eds) Communication, Networks and Computing. CNC 2018. Communications in Computer and Information Science, vol 839. Springer, Singapore. https://doi.org/10.1007/978-981-13-2372-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2372-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2371-3

  • Online ISBN: 978-981-13-2372-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics