Skip to main content

One-Dimensional Nanowire-Based Heterostructures for Gas Sensors

  • Chapter
  • First Online:
Nanowire Electronics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

One-dimensional (1D) nanostructured materials hold great potential for application in electronic devices owing to their structural advantages such as high surface-to-volume ratio, high surface sensitivity, high carrier mobility and ease for device integration. For gas sensing devices, the 1D nanowires have drawn considerable interests and the sensing performances of 1D nanowires could be further improved through surface functionalization. To this end various nanoparticles of metals or metal oxides have been employed as a sensitizer for 1D nanowires to achieve better detection performances. In this chapter, we presented a comprehensive overview on the recent progress with respect to the rational design and growth of 1D hetero-nanowires to make efficient gas sensors. The advantageous aspects of 1D nanowires for application as the sensing elements, as well as the sensing mechanism, are first discussed. We then place the focus on highlighting the sensing capability of nanowire heterostructures, i.e., metal nanoparticle/metal oxide nanowires and binary metal oxide (p-n and n-n) nanowires. Finally, we give some personal perspectives on the future developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  2. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231

    Article  CAS  Google Scholar 

  3. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  Google Scholar 

  4. Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41(13):2405–2408

    Article  CAS  Google Scholar 

  5. Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15(12):997–1000

    Article  CAS  Google Scholar 

  6. Shen G, Chen P-C, Ryu K, Zhou C (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19(7):828–839

    Article  CAS  Google Scholar 

  7. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  8. Ramgir NS, Yang Y, Zacharias M (2010) Nanowire-based sensors. Small 6(16):1705–1722

    Article  CAS  Google Scholar 

  9. Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sensors Actuators B Chem 122(2):659–671

    Article  CAS  Google Scholar 

  10. Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors Actuators B Chem 192:607–627

    Article  CAS  Google Scholar 

  11. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871

    Article  CAS  Google Scholar 

  12. Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15(12):997–1000

    Article  CAS  Google Scholar 

  13. Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615

    Article  CAS  Google Scholar 

  14. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84(18):3654–3656

    Article  CAS  Google Scholar 

  15. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673

    Article  CAS  Google Scholar 

  16. Kim SS, Park JY, Choi S-W, Na HG, Yang JC, Kim HW (2011) Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires. J Alloys Compd 509(37):9171–9177

    Article  CAS  Google Scholar 

  17. Na CW, Woo H-S, Kim I-D, Lee J-H (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150

    Article  CAS  Google Scholar 

  18. Katoch A, Choi S-W, Sun G-J, Kim SS (2013) Pt nanoparticle-decorated ZnO nanowire sensors for detecting benzene at room temperature. J Nanosci Nanotechnol 13(10):7097–7099

    Article  Google Scholar 

  19. Kwak C-H, Woo H-S, Lee J-H (2014) Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sensors Actuators B Chem 204:231–238

    Article  CAS  Google Scholar 

  20. Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing, properties of CuO-functionalized WO3 nanowires. Ceram Int 40(7):11051–11056

    Article  CAS  Google Scholar 

  21. Zhang Y, Xiang Q, Xu JQ, Xu PC, Pan QY, Li F (2009) Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances. J Mater Chem 19(27):4701–4706

    Article  CAS  Google Scholar 

  22. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50

    Article  CAS  Google Scholar 

  23. Hwang I-S, Kim S-J, Choi J-K, Choi J, Ji H, Kim G-T, Cao G, Lee J-H (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sensors Actuators B Chem 148(2):595–600

    Article  CAS  Google Scholar 

  24. Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sensors Actuators B Chem 160(1):1346–1351

    Article  CAS  Google Scholar 

  25. Park S, An S, Mun Y, Lee C (2013) UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-Shell nanowires at room temperature. Acs Appl Mater Inter 5(10):4285–4292

    Article  CAS  Google Scholar 

  26. Kim J-H, Katoch A, Kim SS (2016) Optimum shell thickness and underlying sensing mechanism in p-n CuO-ZnO core-shell nanowires. Sensors Actuators B Chem 222:249–256

    Article  CAS  Google Scholar 

  27. Wu JM (2010) A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 21(23):235501

    Article  CAS  Google Scholar 

  28. Ramgir NS, Mulla IS, Vijayamohanan KP (2005) A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sensors Actuators B Chem 107(2):708–715

    Article  CAS  Google Scholar 

  29. Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841–3843

    Article  CAS  Google Scholar 

  30. Penner RM (2012) Chemical sensing with nanowires. In: Cooks RG, Yeung ES (eds) Annual review of analytical chemistry, vol 5, pp 461–485. https://doi.org/10.1146/annurev-anchem-062011-143007

    Chapter  Google Scholar 

  31. Chen P-C, Shen G, Zhou C (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE T Nanotechnol 7(6):668–682

    Article  Google Scholar 

  32. Ponzoni A, Zappa D, Comini E, Sberveglieri V, Faglia G, Sberveglieri G (2012) Metal oxide nanowire gas sensors: application of Conductometric and surface ionization architectures. In: Del Rosso R, Pierucci S, Klemes JJ (eds) Nose 2012: 3rd international conference on environmental odour monitoring and control. Chemical engineering transactions 30:31–36. doi:https://doi.org/10.3303/cet1230006

  33. Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK (2013) Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloid Surface A 439:101–116

    Article  CAS  Google Scholar 

  34. Sawicka KM, Prasad AK, Gouma PI (2005) Metal oxide nanowires for use in chemical sensing applications. Sens Lett 3(1):31–35

    Article  CAS  Google Scholar 

  35. Fang X, Hu L, Ye C, Zhang L (2010) One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors. Pure Appl Chem 82(11):2185–2198

    Article  CAS  Google Scholar 

  36. Comini E, Baratto C, Concina I, Faglia G, Falasconi M, Ferroni M, Galstyan V, Gobbi E, Ponzoni A, Vomiero A, Zappa D, Sberveglieri V, Sberveglieri G (2013) Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors Actuators B Chem 179:3–20

    Article  CAS  Google Scholar 

  37. Zhai T, Yao J (2012) One-dimensional nanostructures: principles and applications. Wiley, Hoboken

    Book  Google Scholar 

  38. Chen X, Wong CK, Yuan CA, Zhang G (2013) Nanowire-based gas sensors. Sensors Actuators B Chem 177:178–195

    Article  CAS  Google Scholar 

  39. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sensors Actuators B Chem 139(2):699–703

    Article  CAS  Google Scholar 

  40. Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4(10):1919–1924

    Article  CAS  Google Scholar 

  41. Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(6):18–24

    Article  CAS  Google Scholar 

  42. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    Article  CAS  Google Scholar 

  43. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem 5:7–19

    Article  CAS  Google Scholar 

  44. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Jpn 7(1):63–75

    Article  CAS  Google Scholar 

  45. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250–272

    Article  CAS  Google Scholar 

  46. Li T, Zeng W, Wang Z (2015) Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sensors Actuators B Chem 221:1570–1585

    Article  CAS  Google Scholar 

  47. Hsueh T-J, Chang S-J, Hsu C-L, Lin Y-R, Chen IC (2007) Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Appl Phys Lett 91(5):053111

    Article  CAS  Google Scholar 

  48. Chang S-J, Hsueh T-J, Chen IC, Huang B-R (2008) Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 19(17):175502

    Article  CAS  Google Scholar 

  49. Katoch A, Choi S-W, Sun G-J, Kim SS (2015) Low temperature sensing properties of Pt nanoparticle-functionalized networked ZnO nanowires. J Nanosci Nanotechnol 15(1):330–333

    Article  CAS  Google Scholar 

  50. Liang Y-C, Liao W-K, Deng X-S (2014) Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures. J Alloys Compd 599:87–92

    Article  CAS  Google Scholar 

  51. Guo J, Zhang J, Zhu M, Ju D, Xu H, Cao B (2014) High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators B Chem 199:339–345

    Article  CAS  Google Scholar 

  52. Hosseini ZS, Mortezaali A, Zad AI, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloys Compd 628:222–229

    Article  CAS  Google Scholar 

  53. Wang L, Wang S, Xu M, Hu X, Zhang H, Wang Y, Huang W (2013) A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys 15(40):17179–17186

    Article  CAS  Google Scholar 

  54. Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath A, Aswal D, Gupta S (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sensors Actuators B Chem 186:718–726

    Article  CAS  Google Scholar 

  55. Liu X, Zhang J, Guo X, Wu S, Wang S (2010) Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2(7):1178–1184

    Article  CAS  Google Scholar 

  56. Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta K (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sensors Actuators B Chem 187:313–318

    Article  CAS  Google Scholar 

  57. Suo C, Gao C, Wu X, Zuo Y, Wang X, Jia J (2015) Ag-decorated ZnO nanorods prepared by photochemical deposition and their high selectivity to ethanol using conducting oxide electrodes. RSC Adv 5(112):92107–92113

    Article  CAS  Google Scholar 

  58. Ponnuvelu DV, Pullithadathil B, Prasad AK, Dhara S, Ashok A, Mohamed K, Tyagi AK, Raja B (2015) Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications. Appl Surf Sci 355:726–735

    Article  CAS  Google Scholar 

  59. Zhang YA, Xu JQ, Xu PC, Zhu YH, Chen XD, Yu WJ (2010) Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21(28):7

    Article  CAS  Google Scholar 

  60. Rai P, Yu YT (2013) Citrate-assisted one-pot assembly of palladium nanoparticles onto ZnO nanorods for CO sensing application. Mater Chem Phys 142(2–3):545–548

    Article  CAS  Google Scholar 

  61. Rai P, Kim YS, Song HM, Song MK, Yu YT (2012) The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors Actuators B Chem 165(1):133–142

    Article  CAS  Google Scholar 

  62. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N, Saito M, Mori M (2009) Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sensors Actuators B Chem 135(2):524–529

    Article  CAS  Google Scholar 

  63. Fu DY, Zhu CL, Zhang XT, Li CY, Chen YJ (2016) Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J Mater Chem A 4(4):1390–1398

    Article  CAS  Google Scholar 

  64. Kim J-H, Wu P, Kim HW, Kim SS (2016) Highly selective sensing of CO, C6H6, and C7H8 gases by catalytic functionalization with metal nanoparticles. Acs Appl Mater Int 8(11):7173–7183

    Article  CAS  Google Scholar 

  65. Do Dang T, Nguyen Duc H, Pham Van T, Nguyen Van D, Dao TD, Chung HV, Nagao T, Nguyen Van H (2014) Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J Hazard Mater 265:124–132

    Google Scholar 

  66. Park S, Kim S, Ko H, Lee C (2014) Dependence of the selectivity of SnO2 nanorod gas sensors on functionalization materials. Appl Phys a-Mater 117(3):1259–1267

    Article  CAS  Google Scholar 

  67. Lin Y, Wei W, Li YJ, Li F, Zhou JR, Sun DM, Chen Y, Ruan SP (2015) Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J Alloys Compd 651:690–698

    Article  CAS  Google Scholar 

  68. Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G (2017) Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B 256:861–869

    Article  CAS  Google Scholar 

  69. Abideen ZU, Kim J-H, Kim SS (2017) Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sensors Actuators B Chem 238:374–380

    Article  CAS  Google Scholar 

  70. Huang H, Ong C, Guo J, White T, Tse MS, Tan OK (2010) Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. Nanoscale 2(7):1203–1207

    Article  CAS  Google Scholar 

  71. Choi S-W, Jung S-H, Kim SS (2011) Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by au nanoparticles synthesized via gamma-ray radiolysis. J Hazard Mater 193:243–248

    Article  CAS  Google Scholar 

  72. Wang ZJ, Li ZY, Jiang TT, Xu XR, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd-0-loaded SnO2 electrospun nanofibers at room temperature. Acs Appl Mater Int 5(6):2013–2021

    Article  CAS  Google Scholar 

  73. Zheng W, Lu XF, Wang W, Li ZY, Zhang HN, Wang ZJ, Xu XR, Li SY, Wang C (2009) Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection. J Colloid Interface Sci 338(2):366–370

    Article  CAS  Google Scholar 

  74. Kim SS, Park JY, Choi SW, Kim HS, Na HG, Yang JC, Kim HW (2010) Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles. Nanotechnology 21(41):7

    Article  CAS  Google Scholar 

  75. Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. Acs Appl Mater Int 3(7):2246–2252

    Article  CAS  Google Scholar 

  76. Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Song HW (2015) Preparation and gas sensing properties of In2O3/Au Nanorods for detection of volatile organic compounds in exhaled breath. Sci Rep 5 5:10717

    Article  CAS  Google Scholar 

  77. Zou XM, Wang JL, Liu XQ, Wang CL, Jiang Y, Wang Y, Xiao XH, Ho JC, Li JC, Jiang CZ, Fang Y, Liu W, Liao L (2013) Rational Design of sub-Parts per million specific gas sensors Array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett 13(7):3287–3292

    Article  CAS  Google Scholar 

  78. Hu PQ, Du GJ, Zhou WJ, Cui JJ, Lin JJ, Liu H, Liu D, Wang JY, Chen SW (2010) Enhancement of ethanol vapor sensing of TiO2 Nanobelts by surface engineering. Acs Appl Mater Int 2(11):3263–3269

    Article  CAS  Google Scholar 

  79. Jin C, Kim H, Choi S-W, Kim SS, Lee C (2014) Synthesis, structure, and gas-sensing properties of Pt-functionalized TiO2 nanowire sensors. J Nanosci Nanotechnol 14(8):5833–5838

    Article  CAS  Google Scholar 

  80. Meng D, Yamazaki T, Kikuta T (2014) Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires. Sensors Actuators B Chem 190:838–843

    Article  CAS  Google Scholar 

  81. Sennik E, Soysal U, Ozturk ZZ (2014) Pd loaded spider-web TiO2 nanowires: fabrication, characterization and gas sensing properties. Sensors Actuators B Chem 199:424–432

    Article  CAS  Google Scholar 

  82. Sennik E, Alev Ol; Zturk ZZ (2016) The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods. Sensors Actuators B Chem 229:692–700

    Google Scholar 

  83. Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma WJ, Xu JQ (2010) Au nanoparticle modified WO3 Nanorods with their enhanced properties for Photocatalysis and gas sensing. J Phys Chem C 114(5):2049–2055

    Article  CAS  Google Scholar 

  84. Liu X, Zhang J, Yang T, Guo X, Wu S, Wang S (2011) Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties. Sensors Actuators B Chem 156(2):918–923

    Article  CAS  Google Scholar 

  85. Tong PV, Hoa ND, Duy NV, Dang Thi Thanh L, Hieu NV (2016) Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles. Sensors Actuators B Chem 223:453–460

    Article  CAS  Google Scholar 

  86. Choi S-J, Chattopadhyay S, Kim JJ, Kim S-J, Tuller HL, Rutledge GC, Kim I-D (2016) Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8(17):9159–9166

    Article  CAS  Google Scholar 

  87. Nguyen Minh V, Kim D, Kim H (2015) Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci Rep 5 5:11040

    Article  Google Scholar 

  88. Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2015) Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods. Sensors Actuators B Chem 215:630–636

    Article  CAS  Google Scholar 

  89. Chavez F, Perez-Sanchez GF, Goiz O, Zaca-Moran P, Pena-Sierra R, Morales-Acevedo A, Felipe C, Soledad-Priego M (2013) Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl Surf Sci 275:28–35

    Article  CAS  Google Scholar 

  90. Gunawan P, Mei L, Teo J, Ma JM, Highfield J, Li QH, Zhong ZY (2012) Ultrahigh sensitivity of Au/1D alpha-Fe2O3 to acetone and the sensing mechanism. Langmuir 28(39):14090–14099

    Article  CAS  Google Scholar 

  91. Wang SR, Zhang HX, Wang YS, Wang LW, Gong Z (2014) Facile one-pot synthesis of Au nanoparticles decorated porous alpha-Fe2O3 nanorods for in situ detection of VOCs. RSC Adv 4(1):369–373

    Article  CAS  Google Scholar 

  92. Hubner M, Koziej D, Grunwaldt J-D, Weimar U, Barsan N (2012) An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies. Phys Chem Chem Phys 14(38):13249–13254

    Article  CAS  Google Scholar 

  93. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28(5):795–831

    Article  CAS  Google Scholar 

  94. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23

    Article  CAS  Google Scholar 

  95. Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing properties of CuO-functionalized WO3 nanowires. Ceram Int 40(7):11051–11056

    Article  CAS  Google Scholar 

  96. Park S, Sun G-J, Kheel H, Hyun SK, Jin C, Lee C (2016) Hydrogen gas sensing of Co3O4-decorated WO3 nanowires. Met Mater Int 22(1):156–162

    Article  CAS  Google Scholar 

  97. Zhao XD, Ji HM, Jia QQ, Wang MJ (2015) A nanoscale Co3O4-WO3 p-n junction sensor with enhanced acetone responsivity. J Mater Sci-Mater Electron 26(10):8217–8223

    Article  CAS  Google Scholar 

  98. Na CW, Woo H-S, Lee J-H (2012) Design of highly sensitive volatile organic compound sensors by controlling NiO loading on ZnO nanowire networks. RSC Adv 2(2):414–417

    Article  CAS  Google Scholar 

  99. Zhang Y-B, Yin J, Li L, Zhang L-X, Bie L-J (2014) Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors Actuators B Chem 202:500–507

    Article  CAS  Google Scholar 

  100. Xu Q, Ju D, Zhang Z, Yuan S, Zhang J, Xu H, Cao B (2016) Near room-temperature triethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode. Sensors Actuators B Chem 225:16–23

    Article  CAS  Google Scholar 

  101. Zhao M, Wang X, Ning L, Jia J, Li X, Cao L (2011) Electrospun cu-doped ZnO nanofibers for H2S sensing. Sensors Actuators B Chem 156(2):588–592

    Article  CAS  Google Scholar 

  102. Sun GJ, Choi SW, Katoch A, Wu P, Kim SS (2013) Bi-functional mechanism of H2S detection using CuO-SnO2 nanowires. J Mater Chem C 1(35):5454–5462

    Article  CAS  Google Scholar 

  103. Choi S-W, Katoch A, Kim J-H, Kim SS (2014) Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p-n heterojunctions by functionalization with p-Cr2O3 nanoparticles. Acs Appl Mater Inter 6(20):17723–17729

    Article  CAS  Google Scholar 

  104. Hieu NV, Phung THV, Nhan LT, Duy NV, Hoa ND (2012) Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles. Appl Phys Lett 101(25):253106

    Article  CAS  Google Scholar 

  105. Kim J-H, Katoch A, Kim S-H, Kim SS (2015) Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) Core–Shell nanowires. Acs Appl Mater Int 7(28):15351–15358

    Article  CAS  Google Scholar 

  106. Zhao Y, He X, Li J, Gao X, Jia J (2012) Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties. Sensors Actuators B Chem 165(1):82–87

    Article  CAS  Google Scholar 

  107. Choi S-W, Zhang J, Akash K, Kim SS (2012) H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers. Sensors Actuators B Chem 169:54–60

    Article  CAS  Google Scholar 

  108. Liang X, Kim T-H, Yoon J-W, Kwak C-H, Lee J-H (2015) Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors Actuators B Chem 209:934–942

    Article  CAS  Google Scholar 

  109. Tien LC, Norton DP, Gila BP, Pearton SJ, Wang HT, Kang BS, Ren F (2007) Detection of hydrogen with SnO2-coated ZnO nanorods. Appl Surf Sci 253(10):4748–4752

    Article  CAS  Google Scholar 

  110. Kuang Q, Lao C-S, Li Z, Liu Y-Z, Xie Z-X, Zheng L-S, Wang ZL (2008) Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J Phys Chem C 112(30):11539–11544

    Article  CAS  Google Scholar 

  111. An S, Park S, Ko H, Lee C (2012) Enhanced NO2 gas sensing properties of WO3 nanorods encapsulated with ZnO. Appl Phys a-Mater 108(1):53–58

    Article  CAS  Google Scholar 

  112. Lu GY, Xu J, Sun JB, Yu YS, Zhang YQ, Liu FM (2012) UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors Actuators B Chem 162(1):82–88

    Article  CAS  Google Scholar 

  113. Kaneti YV, Zakaria QMD, Zhang ZJ, Chen CY, Yue J, Liu MS, Jiang XC, Yu AB (2014) Solvothermal synthesis of ZnO-decorated alpha-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2(33):13283–13292

    Article  CAS  Google Scholar 

  114. Zhang HX, Wang SR, Wang YS, Yang JD, Gao XL, Wang LW (2014) TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties. Phys Chem Chem Phys 16(22):10830–10836

    Article  CAS  Google Scholar 

  115. Zhang JX, Zhu GX, Shen XP, Ji ZY, Chen KM (2014) Alpha-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst Res Technol 49(7):452–459

    Article  CAS  Google Scholar 

  116. Zhao CH, Hu WQ, Zhang ZX, Zhou JY, Pan XJ, Xie EQ (2014) Effects of SnO2 additives on nanostructure and gas-sensing properties of alpha-Fe2O3 nanotubes. Sensors Actuators B Chem 195:486–493

    Article  CAS  Google Scholar 

  117. Choi SW, Katoch A, Kim JH, Kim SS (2015) Striking sensing improvement of n-type oxide nanowires by electronic sensitization based on work function difference. J Mater Chem C 3(7):1521–1527

    Article  CAS  Google Scholar 

  118. Kim S, Park S, Sun GJ, Hyun SK, Kim KK, Lee C (2015) Enhanced acetone gas sensing performance of the multiple-networked Fe2O3-functionalized In2O3 nanowire sensor. Curr Appl Phys 15(8):947–952

    Article  Google Scholar 

  119. Xu S, Gao J, Wang LL, Kan K, Xie Y, Shen PK, Li L, Shi KY (2015) Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7(35):14643–14651

    Article  CAS  Google Scholar 

  120. Diao KD, Huang YP, Zhou MJ, Zhang JC, Tang YJ, Wang SX, Liu TX, Cui XD (2016) Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures. RSC Adv 6(34):28419–28427

    Article  CAS  Google Scholar 

  121. Li F, Gao X, Wang R, Zhang T, Lu G, Barsan N (2016) Design of Core–Shell Heterostructure Nanofibers with different work function and their sensing properties to trimethylamine. Acs Appl Mater Int 8(30):19799–19806

    Article  CAS  Google Scholar 

  122. Feng C, Wang C, Cheng P, Li X, Wang B, Guan Y, Ma J, Zhang H, Sun Y, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sens Actuators B 221(C):434–442

    Article  CAS  Google Scholar 

  123. Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers. Sensors Actuators B Chem 209:622–629

    Article  CAS  Google Scholar 

  124. Li F, Gao X, Wang R, Zhang T, Lu G (2017) Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuators B 248(C):812–819

    Article  CAS  Google Scholar 

  125. Zhang J, Liu X, Wang L, Yang T, Guo X, Wu S, Wang S, Zhang S (2011) Synthesis and gas sensing properties of alpha-Fe2O3@ZnO core-shell nanospindles. Nanotechnology 22(18):185501

    Article  CAS  Google Scholar 

  126. Kukkola J, Mohl M, Leino A-R, Maklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K (2013) Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sensors Actuators B Chem 186:90–95

    Article  CAS  Google Scholar 

  127. Zhu LF, She JC, Luo JY, Deng SZ, Chen J, Xu NS (2010) Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films. J Phys Chem C 114(36):15504–15509

    Article  CAS  Google Scholar 

  128. Hwang I-S, Choi J-K, Woo H-S, Kim S-J, Jung S-Y, Seong T-Y, Kim I-D, Lee J-H (2011) Facile control of C2H5OH sensing characteristics by decorating discrete ag nanoclusters on SnO2 nanowire networks. Acs Appl Mater Int 3(8):3140–3145

    Article  CAS  Google Scholar 

  129. Kwak C-H, Woo H-S, Lee J-H (2014) Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sens Actuators B 204(Supplement C):231–238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Liu, X. (2019). One-Dimensional Nanowire-Based Heterostructures for Gas Sensors. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_7

Download citation

Publish with us

Policies and ethics