Skip to main content

Nanowire-Based Transparent Conductive Electrodes

  • Chapter
  • First Online:
Nanowire Electronics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

For decades, transparent conductive electrodes (TCEs) have been widely used in various applications owing to their high optical transmittance and excellent electrical conductivity. Despite indium tin oxide (ITO) being the most commonly used TCE nowadays, developing the potential substitution materials of ITO is necessary due to the (1) high cost of indium and (2) the brittleness of ITO film, which makes ITO film difficult to use in flexible substrates. In recent years, the intensive development of nanotechnology leads the growth of nanostructured TCEs because of their high surface area, enhanced active sites, and shortened diffusion distances. This chapter starts at briefly introducing the principles and requirements of TCEs, followed by reviewing and comparing the synthetic methodologies and physical properties of various nanostructured TCEs such as transparent conductive oxides (TCOs), single-walled carbon nanotubes (SWCNTs), and metallic nanowires. The applications based on those TCEs, such as photovoltaic devices, light-emitting diodes (LED), touch panels, smart windows, and transparent heaters, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang MG, Guo LJ (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19(10):1391–1396. https://doi.org/10.1002/adma.200700134

    Article  CAS  Google Scholar 

  2. O'Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb SB, Torres CMS (2009) Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nat Nanotechnol 4(4):239–244. https://doi.org/10.1038/nnano.2008.418

    Article  CAS  Google Scholar 

  3. Minami T (2008) Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516(17):5822–5828. https://doi.org/10.1016/j.tsf.2007.10.063

    Article  CAS  Google Scholar 

  4. Jae Kyeong J (2011) The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol 26(3):034008

    Article  Google Scholar 

  5. Yang SB, Kong B-S, Jung D-H, Baek Y-K, Han C-S, Oh S-K, Jung H-T (2011) Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4):1361–1373. https://doi.org/10.1039/C0NR00855A

    Article  CAS  Google Scholar 

  6. Novak JP, Lay MD, Perkins FK, Snow ES (2004) Macroelectronic applications of carbon nanotube networks. Solid-State Electron 48(10–11):1753–1756. https://doi.org/10.1016/j.sse.2004.05.010

    Article  CAS  Google Scholar 

  7. Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16(35):3533–3539. https://doi.org/10.1039/B603821M

    Article  CAS  Google Scholar 

  8. Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surface Sci 252(2):425–429. https://doi.org/10.1016/j.apsusc.2005.01.020

    Article  CAS  Google Scholar 

  9. Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87(20):203511. https://doi.org/10.1063/1.2132065

    Article  CAS  Google Scholar 

  10. Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506. https://doi.org/10.1063/1.2209887

    Article  CAS  Google Scholar 

  11. Vanboort HJ, Groth R (1968) Low-pressure sodium lamps with indium oxide filter. Philips Tech Rev 29(1):17

    CAS  Google Scholar 

  12. Kostlin H, Jost R, Lems W (1975) Optical and electrical properties of doped in2o3 films. Physica Status Solidi a-Appl Res 29(1):87–93. https://doi.org/10.1002/pssa.2210290110

    Article  Google Scholar 

  13. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6(12):808–816. https://doi.org/10.1038/nphoton.2012.282

    Article  CAS  Google Scholar 

  14. Gao J, Chen R, Li DH, Jiang L, Ye JC, Ma XC, Chen XD, Xiong QH, Sun HD, Wu T (2011) UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. Nanotechnology 22(19):195706

    Article  CAS  Google Scholar 

  15. Wan Q, Dattoli EN, Fung WY, Guo W, Chen YB, Pan XQ, Lu W (2006) High-performance transparent conducting oxide nanowires. Nano Lett 6(12):2909–2915. https://doi.org/10.1021/nl062213d

    Article  CAS  Google Scholar 

  16. Nguyen P, Ng HT, Kong J, Cassell AM, Quinn R, Li J, Han J, McNeil M, Meyyappan M (2003) Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett 3(7):925–928. https://doi.org/10.1021/nl0342186

    Article  CAS  Google Scholar 

  17. Han GS, Lee S, Noh JH, Chung HS, Park JH, Swain BS, Im J-H, Park N-G, Jung HS (2014) 3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale 6(11):6127–6132. https://doi.org/10.1039/C4NR00621F

    Article  CAS  Google Scholar 

  18. Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D (2016) Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44):6052–6075. https://doi.org/10.1002/smll.201602581

    Article  CAS  Google Scholar 

  19. Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513. https://doi.org/10.1002/adma.201003188

    Article  CAS  Google Scholar 

  20. Morfa AJ, Akinoglu EM, Subbiah J, Giersig M, Mulvaney P (2013) Transparent metal electrodes from ordered nanosphere arrays. J Appl Phys 114(5):054502. https://doi.org/10.1063/1.4816790

    Article  CAS  Google Scholar 

  21. Andersson A, Johansson N, Bröms P, Yu N, Lupo D, Salaneck WR (1998) Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv Mater 10(11):859–863. https://doi.org/10.1002/(SICI)1521-4095(199808)10:11<859::AID-ADMA859>3.0.CO;2-1

    Article  CAS  Google Scholar 

  22. Park SH, Lee BH, Shin JM, Jeong S-Y, Song S, Suh H, Lee K (2012) Highly transparent polymer light-emitting diode using modified aluminum-doped zinc oxide top electrode. Appl Phys Lett 100(13):133306. https://doi.org/10.1063/1.3698340

    Article  CAS  Google Scholar 

  23. Zou JH, Liu JH, Karakoti AS, Kumar A, Joung D, Li QA, Khondaker SI, Seal S, Zhai L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4(12):7293–7302. https://doi.org/10.1021/nn102246a

    Article  Google Scholar 

  24. Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19(15):1897–1916. https://doi.org/10.1002/adma.200602223

    Article  CAS  Google Scholar 

  25. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001. https://doi.org/10.1088/0957-4484/24/45/452001

    Article  CAS  Google Scholar 

  26. Xiong X, Zou C-L, Ren X-F, Liu A-P, Ye Y-X, Sun F-W, Guo G-C (2013) Silver nanowires for photonics applications. Laser Photonics Rev 7(6):901–919. https://doi.org/10.1002/lpor.201200076

    Article  CAS  Google Scholar 

  27. Guo CF, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18(3):143–154. https://doi.org/10.1016/j.mattod.2014.08.018

    Article  CAS  Google Scholar 

  28. De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5):2713–2720. https://doi.org/10.1021/nn100343f

    Article  CAS  Google Scholar 

  29. Eritt M, May C, Leo K, Toerker M, Radehaus C (2010) OLED manufacturing for large area lighting applications. Thin Solid Films 518(11):3042–3045. https://doi.org/10.1016/j.tsf.2009.09.188

    Article  CAS  Google Scholar 

  30. Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato J-P (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5(6):427–433. https://doi.org/10.1007/s12274-012-0225-2

    Article  CAS  Google Scholar 

  31. Sorel S, Bellet D, Coleman JN (2014) Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks. ACS Nano 8(5):4805–4814

    Article  CAS  Google Scholar 

  32. Ji S, He W, Wang K, Ran Y, Ye C (2014) Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 10(23):4951–4960. https://doi.org/10.1002/smll.201401690

    Article  CAS  Google Scholar 

  33. Rai T, Dantes P, Bahreyni B, Kim WS (2013) A stretchable RF antenna with silver nanowires. IEEE Electron Device Lett 34(4):544–546. https://doi.org/10.1109/LED.2013.2245626

    Article  CAS  Google Scholar 

  34. Song L, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6(6):4248–4253. https://doi.org/10.1021/am405972e

    Article  CAS  Google Scholar 

  35. Uematsu S, Quan Z, Suganuma Y, Sonoyama N (2012) Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. J Power Sources 217(Supplement C):13–20. https://doi.org/10.1016/j.jpowsour.2012.05.096

    Article  CAS  Google Scholar 

  36. Hu M, Gao J, Dong Y, Li K, Shan G, Yang S, Li RK-Y (2012) Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18):7101–7106. https://doi.org/10.1021/la300720y

    Article  CAS  Google Scholar 

  37. Housecroft C, Sharpe AG (2012) Inorganic chemistry. Pearson Education Limited, Harlow

    Google Scholar 

  38. Noriega R, Rivnay J, Goris L, Kalblein D, Klauk H, Kern K, Thompson LM, Palke AC, Stebbins JF, Jokisaari JR, Kusinski G, Salleo A (2010) Probing the electrical properties of highly-doped Al:ZnO nanowire ensembles. J Appl Phys 107(7):074312. https://doi.org/10.1063/1.3360930

    Article  CAS  Google Scholar 

  39. Wang H-W, Ting C-F, Hung M-K, Chiou C-H, Liu Y-L, Liu Z, Ratinac KR, Ringer SP (2009) Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition. Nanotechnology 20(5):055601

    Article  Google Scholar 

  40. Synowicki R, Hale JS, Ianno N, Woollam JA, Hambourger PD (1993) Low earth orbit effects on indium tin oxide and polyester and comparison with laboratory simulations. Surf Coat Technol 62(1–3):499–503

    Article  CAS  Google Scholar 

  41. Deb SK, Lee S-H, Tracy CE, Pitts JR, Gregg BA, Branz HM (2001) Stand-alone photovoltaic-powered electrochromic smart window. Electrochim Acta 46(13):2125–2130

    Article  CAS  Google Scholar 

  42. Betz U, Olsson MK, Marthy J, Escolá M, Atamny F (2006) Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol 200(20):5751–5759

    Article  CAS  Google Scholar 

  43. Hartnagel H, Dawar A, Jain A, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics, Bristol

    Google Scholar 

  44. Maruyama T, Fukui K (1991) Indium-tin oxide thin films prepared by chemical vapor deposition. J Appl Phys 70(7):3848–3851

    Article  CAS  Google Scholar 

  45. Wu W-F, Chiou B-S, Hsieh S-T (1994) Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films. Semicond Sci Technol 9(6):1242

    Article  CAS  Google Scholar 

  46. Ishida T, Kobayashi H, Nakato Y (1993) Structures and properties of electron-beam-evaporated indium tin oxide films as studied by X-ray photoelectron spectroscopy and work-function measurements. J Appl Phys 73(9):4344–4350

    Article  CAS  Google Scholar 

  47. Alam M, Cameron D (2000) Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films 377:455–459

    Article  Google Scholar 

  48. Vasu V, Subrahmanyam A (1990) Reaction kinetics of the formation of indium tin oxide films grown by spray pyrolysis. Thin Solid Films 193:696–703

    Article  Google Scholar 

  49. Chiquito AJ, Lanfredi AJ, De Oliveira RF, Pozzi LP, Leite ER (2007) Electron dephasing and weak localization in Sn doped In2O3 nanowires. Nano Lett 7(5):1439–1443

    Article  CAS  Google Scholar 

  50. Wan Q, Feng P, Wang T (2006) Vertically aligned tin-doped indium oxide nanowire arrays: epitaxial growth and electron field emission properties. Appl Phys Lett 89(12):123102

    Article  Google Scholar 

  51. Joanni E, Savu R, de Sousa GM, Bueno PR, de Freitas JN, Nogueira AF, Longo E, Varela JA (2007) Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scr Mater 57(3):277–280

    Article  CAS  Google Scholar 

  52. Yan C, Jiang H, Zhao T, Li C, Ma J, Lee PS (2011) Binder-free Co (OH) 2 nanoflake–ITO nanowire heterostructured electrodes for electrochemical energy storage with improved high-rate capabilities. J Mater Chem 21(28):10482–10488

    Article  CAS  Google Scholar 

  53. Kim D-W, Hwang I-S, Kwon SJ, Kang H-Y, Park K-S, Choi Y-J, Choi K-J, Park J-G (2007) Highly conductive coaxial SnO2− In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7(10):3041–3045

    Article  CAS  Google Scholar 

  54. Park K-S, Kang J-G, Choi Y-J, Lee S, Kim D-W, Park J-G (2011) Long-term, high-rate lithium storage capabilities of TiO 2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy Environ Sci 4(5):1796–1801

    Article  CAS  Google Scholar 

  55. Hsu CH, Chen DH (2010) Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21(28):285603. https://doi.org/10.1088/0957-4484/21/28/285603

    Article  CAS  Google Scholar 

  56. Lee J-H, Park B-O (2003) Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 426(1–2):94–99. https://doi.org/10.1016/S0040-6090(03)00014-2

    Article  CAS  Google Scholar 

  57. Kusinski GJ, Jokisaari JR, Noriega R, Goris L, Donovan M, Salleo A (2010) Transmission electron microscopy of solution-processed, intrinsic and Al-doped ZnO nanowires for transparent electrode fabrication. J Microscopy-Oxford 237(3):443–449. https://doi.org/10.1111/j.1365-2818.2009.03289.x

    Article  CAS  Google Scholar 

  58. Herrero J, Guillén C (2004) Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering. Thin Solid Films 451–452:630–633. https://doi.org/10.1016/j.tsf.2003.11.050

    Article  CAS  Google Scholar 

  59. Ellmer K (2001) Resistivity of polycrystalline zinc oxide films: current status and physical limit. J Phys D Appl Phys 34(21):3097

    Article  CAS  Google Scholar 

  60. Tang W, Cameron DC (1994) Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process. Thin Solid Films 238(1):83–87. https://doi.org/10.1016/0040-6090(94)90653-X

    Article  CAS  Google Scholar 

  61. Bamiduro O, Mustafa H, Mundle R, Konda RB, Pradhan AK (2007) Metal-like conductivity in transparent Al:ZnO films. Appl Phys Lett 90(25):252108. https://doi.org/10.1063/1.2749836

    Article  CAS  Google Scholar 

  62. Kun-Yang W, Cheng-Chuan W, Dong-Hwang C (2007) Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol–gel process. Nanotechnology 18(30):305604

    Article  Google Scholar 

  63. Goris L, Noriega R, Donovan M, Jokisaari J, Kusinski G, Salleo A (2009) Intrinsic and doped zinc oxide nanowires for transparent electrode fabrication via low-temperature solution synthesis. J Electron Mater 38(4):586–595. https://doi.org/10.1007/s11664-008-0618-x

    Article  CAS  Google Scholar 

  64. Zang W, Wang W, Zhu D, Xing L, Xue X (2014) Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv 4(99):56211–56215. https://doi.org/10.1039/C4RA10216A

    Article  CAS  Google Scholar 

  65. Xue XY, Nie YX, He B, Xing LL, Zhang Y, Wang ZL (2013) Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 24(22):225501. https://doi.org/10.1088/0957-4484/24/22/225501

    Article  CAS  Google Scholar 

  66. Xu YF, Rao HS, Wang XD, Chen HY, Kuang DB, Su CY (2016) In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. J Mater Chem A 4(14):5124–5129. https://doi.org/10.1039/c5ta10563c

    Article  CAS  Google Scholar 

  67. Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M (2001) Epitaxial growth of transparent p-type conducting CuGaO 2 thin films on sapphire (001) substrates by pulsed laser deposition. J Appl Phys 89(3):1790–1793

    Article  CAS  Google Scholar 

  68. Nagarajan R, Draeseke A, Sleight A, Tate J (2001) P-type conductivity in CuCr 1− x Mg x O 2 films and powders. J Appl Phys 89(12):8022–8025

    Article  CAS  Google Scholar 

  69. Jayaraj M, Draeseke A, Tate J, Sleight A (2001) P-type transparent thin films of CuY 1− x Ca x O 2. Thin Solid Films 397(1):244–248

    Article  CAS  Google Scholar 

  70. Kudo A, Yanagi H, Hosono H, Kawazoe H (1998) SrCu 2 O 2: a p-type conductive oxide with wide band gap. Appl Phys Lett 73(2):220–222

    Article  CAS  Google Scholar 

  71. Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H (2001) Bipolarity in electrical conduction of transparent oxide semiconductor CuInO 2 with delafossite structure. Appl Phys Lett 78(11):1583–1585

    Article  CAS  Google Scholar 

  72. Scanlon DO, Watson GW (2009) (Cu2S2)(Sr3Sc2O5)− a layered, direct band gap, p-type transparent conducting Oxychalcogenide: a theoretical analysis. Chem Mater 21(22):5435–5442

    Article  CAS  Google Scholar 

  73. Hirose H, Ueda K, Kawazoe H, Hosono H (2002) Electronic structure of Sr2Cu2ZnO2S2 layered oxysulfide with CuS layers. Chem Mater 14(3):1037–1041

    Article  CAS  Google Scholar 

  74. Subrahmanyam A, Barik UK (2005) Synthesis of P-type transparent conducting silver: indium oxide (AIO) thin films by reactive electron beam evaporation technique. J Phys Chem Solids 66(5):817–822

    Article  CAS  Google Scholar 

  75. Golshahi S, Rozati S, Martins R, Fortunato E (2009) P-type ZnO thin film deposited by spray pyrolysis technique: the effect of solution concentration. Thin Solid Films 518(4):1149–1152

    Article  CAS  Google Scholar 

  76. Parreira P, Lavareda G, Valente J, Nunes F, Amaral A, de Carvalho CN (2010) Optoelectronic properties of transparent p-type semiconductor CuxS thin films. Physica Status Solidi (a) 207(7):1652–1654

    Article  CAS  Google Scholar 

  77. Chen H-Y, Su H-C, Chen C-H, Liu K-L, Tsai C-M, Yen S-J, Yew T-R (2011) Indium-doped molybdenum oxide as a new p-type transparent conductive oxide. J Mater Chem 21(15):5745–5752

    Article  CAS  Google Scholar 

  78. Liu Y, Pollaor S, Wu Y (2015) Electrohydrodynamic processing of p-type transparent conducting oxides. J Nanomater 2015:1

    Google Scholar 

  79. Hu L, Hecht DS, Gruner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844

    Article  CAS  Google Scholar 

  80. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  Google Scholar 

  81. Pei S, Du J, Zeng Y, Liu C, Cheng H-M (2009) The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 20(23):235707

    Article  Google Scholar 

  82. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21(31):3210–3216

    Article  CAS  Google Scholar 

  83. Geng H-Z, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129(25):7758–7759

    Article  CAS  Google Scholar 

  84. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  Google Scholar 

  85. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363

    Article  CAS  Google Scholar 

  86. Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112

    Article  Google Scholar 

  87. Kong B-S, Jung D-H, Oh S-K, Han C-S, Jung H-T (2007) Single-walled carbon nanotube gold nanohybrids: application in highly effective transparent and conductive films. J Phys Chem C 111(23):8377–8382

    Article  CAS  Google Scholar 

  88. Hu L, Zhao YL, Ryu K, Zhou C, Stoddart JF, Grüner G (2008) Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv Mater 20(5):939–946

    Article  CAS  Google Scholar 

  89. Lee P, Ham J, Lee J, Hong S, Han S, Suh YD, Lee SE, Yeo J, Lee SS, Lee D (2014) Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater 24(36):5671–5678

    Article  CAS  Google Scholar 

  90. Lee J-Y, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8(2):689–692

    Article  CAS  Google Scholar 

  91. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774

    Article  CAS  Google Scholar 

  92. Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6):1996–2004

    Article  CAS  Google Scholar 

  93. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414

    Article  CAS  Google Scholar 

  94. Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963

    Article  CAS  Google Scholar 

  95. Kim T, Canlier A, Kim GH, Choi J, Park M, Han SM (2013) Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl Mater Interfaces 5(3):788–794

    Article  CAS  Google Scholar 

  96. Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22(24):245201

    Article  Google Scholar 

  97. Tokuno T, Nogi M, Karakawa M, Jiu J, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4(12):1215–1222

    Article  CAS  Google Scholar 

  98. Spechler JA, Arnold CB (2012) Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Appl Phys A 108(1):25–28

    Article  CAS  Google Scholar 

  99. Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y, Lee Y (2013) Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5(17):7750–7755

    Article  CAS  Google Scholar 

  100. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23(5):664–668

    Article  CAS  Google Scholar 

  101. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23(26):2905–2910

    Article  CAS  Google Scholar 

  102. Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563

    Article  CAS  Google Scholar 

  103. Survey G (2016) Mineral commodity summaries 2016. Government Printing Office

    Google Scholar 

  104. Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc 134(35):14283–14286

    Article  CAS  Google Scholar 

  105. Hsu P-C, Wu H, Carney TJ, McDowell MT, Yang Y, Garnett EC, Li M, Hu L, Cui Y (2012) Passivation coating on electrospun copper nanofibers for stable transparent electrodes. ACS Nano 6(6):5150–5156

    Article  CAS  Google Scholar 

  106. Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323

    Article  Google Scholar 

  107. Kiruthika S, Gupta R, Rao K, Chakraborty S, Padmavathy N, Kulkarni GU (2014) Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J Mater Chem C 2(11):2089–2094

    Article  CAS  Google Scholar 

  108. Kang M-G, Park HJ, Ahn SH, Guo LJ (2010) Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energy Mater Sol Cells 94(6):1179–1184

    Article  CAS  Google Scholar 

  109. Yang L, Zhang T, Zhou H, Price SC, Wiley BJ, You W (2011) Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Interfaces 3(10):4075–4084

    Article  CAS  Google Scholar 

  110. Kim A, Won Y, Woo K, Kim C-H, Moon J (2013) Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2):1081–1091

    Article  CAS  Google Scholar 

  111. Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122. https://doi.org/10.1002/adma.201201886

    Article  CAS  Google Scholar 

  112. Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2):1590–1600

    Article  CAS  Google Scholar 

  113. Hu L, Gruner G, Li D, Kaner RB, Cech J (2007) Patternable transparent carbon nanotube films for electrochromic devices. AIP

    Google Scholar 

  114. Yoon YH, Song JW, Kim D, Kim J, Park JK, Oh SK, Han CS (2007) Transparent film heater using single-walled carbon nanotubes. Adv Mater 19(23):4284–4287

    Article  CAS  Google Scholar 

  115. Wan Q, Huang J, Xie Z, Wang T, Dattoli EN, Lu W (2008) Branched Sn O 2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl Phys Lett 92(10):102101

    Article  Google Scholar 

  116. Kurowska E, Brzózka A, Jarosz M, Sulka G, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H 2 O 2. Electrochim Acta 104:439–447

    Article  CAS  Google Scholar 

  117. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Yi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, HY., Tu, MC. (2019). Nanowire-Based Transparent Conductive Electrodes. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_6

Download citation

Publish with us

Policies and ethics