Skip to main content

Probing Material Interfaces in Nanowire Devices Using Capacitive Measurements

  • Chapter
  • First Online:
Nanowire Electronics

Part of the book series: Nanostructure Science and Technology ((NST))

  • 998 Accesses

Abstract

Semiconductor devices are systems composed of multiple materials, and their functionality depends on the junctions and interfaces between these materials. In this chapter, I demonstrate a method to study junctions and interfaces in one-dimensional nanoscale semiconductor materials. Examined are insulator interface and dopant profile in vapor-liquid-solid (VLS) -grown silicon nanowires, the electronic properties of the native surface of InAs nanowires grown using bottom-up methods, and metal-carbon nanotube (CNT) Schottky contacts. Specifically, I used capacitance-voltage (C-V) measurements to examine these junctions and interfaces. For the Si nanowire, I used this technique to obtain the density of trap states at its interface with Al2O3 insulator. The dopant profile in Si nanowires was found to agree well with predictions from interstitial- and vacancy-assisted diffusion model, as in bulk Si material. For InAs nanowires, I used the C-V technique to extract the trap density of its native surface. The trap lifetime in these InAs nanowires, extracted using the C-V method, depends on the energy separation between the trap state and the conduction band, similarly to bulk materials. Lastly, I examined the metal-CNT Schottky junction using an instrumentation capable of rapid measurement of attofarad (10−18 F)-level capacitances. It was revealed that there is a larger-than-expected capacitance between the metal contact and the CNT and that this capacitance depends strongly on the apparent Schottky barrier height (SBH). The commonly assumed model where the electrical contact to the nanotube ends abruptly at the metal junction needs considerable revision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jan CH, Bai P, Choi J et al (2005) A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors. Paper presented at the IEEE international electron device meeting, Washington, DC, 5–7 December 2005

    Google Scholar 

  2. Quevedo-Lopez MA, Krishnan SA, Kirsch PD et al (2005) High performance gate first HfSiON dielectric satisfying 45nm node requirements. Paper presented at the IEEE international electron device meeting, Washington, DC, 5–7 December 2005

    Google Scholar 

  3. Wilk GD, Wallace RM, Anthony JM (2000) Hafnium and zirconium silicates for advanced gate dielectrics. J Appl Phys 87:484–492

    Article  CAS  Google Scholar 

  4. Ranade P, Takeuchi H, King TJ et al (2001) Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem Solid State Lett 4:G85–G87

    Article  CAS  Google Scholar 

  5. Maex K, Baklanov MR, Shamiryan D et al (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93:8793–8841

    Article  CAS  Google Scholar 

  6. Liu F, Yu RR, Young AM et al (2008) A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid cu-adhesive bonding. Paper presented at the IEEE international electron device meeting, San Francisco, CA, 15–17 December 2008

    Google Scholar 

  7. Lauwers A, Veloso A, Hoffmann T et al (2005) CMOS integration of dual work function phase controlled Ni FUSI with simultaneous silicidation of NMOS (NiSi) and PMOS (Ni-rich silicide) gates on HfSiON. pp 646–649

    Google Scholar 

  8. Kedzierski J, Xuan P, Anderson EH et al (2000) Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime. pp 57–59

    Google Scholar 

  9. McKee RA, Walker FJ, Chisholm MF (1998) Crystalline oxides on silicon: the first five monolayers. Phys Rev Lett 81:3014–3017

    Article  CAS  Google Scholar 

  10. Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  Google Scholar 

  11. Goldberger J, Hochbaum AI, Fan R et al (2006) Silicon vertically integrated nanowire field effect transistors. Nano Lett 6:973–977

    Article  CAS  Google Scholar 

  12. Heinze S, Tersoff J, Martel R et al (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89:1068011–1068014

    Article  Google Scholar 

  13. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    Article  CAS  Google Scholar 

  14. Ilani S, Donev LAK, Kindermann M et al (2006) Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat Phys 2:687–691

    Article  CAS  Google Scholar 

  15. Garnett EC, Tseng YC, Khanal DR et al (2009) Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nat Nanotechnol 4:311–314

    Article  CAS  Google Scholar 

  16. Tseng Y (2009) Interfaces and junctions in nanoscale bottom-up semiconductor devices. Dissertation, University of California Berkeley

    Google Scholar 

  17. He R, Gao D, Fan R et al (2005) Si nanowire bridges in microtrenches: integration of growth into device fabrication. Adv Mater 17:2098–2102

    Article  CAS  Google Scholar 

  18. Cui Y, Zhong Z, Wang D et al (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152

    Article  CAS  Google Scholar 

  19. Sze S (2001) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  20. Nicollian E, Brewers JR (1982) MOS physics and technology. Wiley – Interscience, New York

    Google Scholar 

  21. Kennedy DP, Murley PC (1972) Analysis of epitaxial layer thickness variability in the fabrication of high performance bipolar transistors. Solid State Electron 15:203–213

    Article  Google Scholar 

  22. Kennedy DP, O’Brien RR (1969) Two-dimensional mathematical analysis of planar type junction field-effect transistor. IBM J Res Dev 13:662–674

    Article  CAS  Google Scholar 

  23. Wang D, Wang Q, Javey A et al (2003) Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl Phys Lett 83:2432–2434

    Article  CAS  Google Scholar 

  24. Fort AC, Johnny CH, Chueh YL et al (2009) Diameter-dependent electron mobility of lnas nanowires. Nano Lett 9:360–365

    Article  Google Scholar 

  25. Khakifirooz A, Antoniadis DA (2008) MOSFET performance scaling – part I: historical trends. IEEE Trans Electron Devices 55:1391–1400

    Article  CAS  Google Scholar 

  26. Wilk GD, Wallace RM, Anthony JM (2001) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89:5243–5275

    Article  CAS  Google Scholar 

  27. Truong L, Fedorenko YG, Afanaśev VV et al (2005) Admittance spectroscopy of traps at the interfaces of (1 0 0)Si with Al2O3, ZrO2, and HfO2. Microelectron Reliab 45:823–826

    Article  CAS  Google Scholar 

  28. Dueñas S, Castán H, García H et al (2006) Influence of single and double deposition temperatures on the interface quality of atomic layer deposited Al2O3 dielectric thin films on silicon. J Appl Phys 99:054902

    Article  Google Scholar 

  29. Kim TW, Kang WN, Yoon YS et al (1993) The interfacial layer formation of the Al2O3/Si structures grown by low-pressure metalorganic chemical vapor deposition. J Appl Phys 74:760–762

    Article  CAS  Google Scholar 

  30. Roddaro S, Nilsson K, Astromskas G et al (2008) InAs nanowire metal-oxide-semiconductor capacitors. Appl Phys Lett 92:253509

    Article  Google Scholar 

  31. Pozar D (2004) Microwave engineering, 3rd edn. Wiley, New York

    Google Scholar 

  32. Chen Z, Appenzeller J, Knoch J et al (2005) The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5:1497–1502

    Article  CAS  Google Scholar 

  33. Appenzeller J, Radosavljević M, Knoch J et al (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92:483011–483014

    Google Scholar 

  34. Guo J, Datta S, Lundstrom M (2004) A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans Electron Devices 51:172–177

    Article  CAS  Google Scholar 

  35. Jarillo-Herrero P, Sapmaz S, Dekker C et al (2004) Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429:389–392

    Article  CAS  Google Scholar 

  36. Tseng YC, Bokor J (2010) Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts. Appl Phys Lett 96:013103

    Article  Google Scholar 

  37. Léonard F, Talin AA (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97:026804

    Article  Google Scholar 

  38. Guo J, Lundstrom MS (2002) A computational study of thin-body, double-gate, schottky barrier MOSFETs. IEEE Trans Electron Devices 49:1897–1902

    Article  CAS  Google Scholar 

  39. Sinha S, Balijepalli A (2008) Cao Y A simplified model of Carbon nanotube transistor with applications to analog and digital design. pp 502–507

    Google Scholar 

  40. Makarovski A, Zhukov A, Liu J et al (2007) Four-probe measurements of carbon nanotubes with narrow metal contacts. Phys Rev B Condens Matter Mater Phys 76:161405

    Article  Google Scholar 

  41. Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5:858–862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chih Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tseng, YC. (2019). Probing Material Interfaces in Nanowire Devices Using Capacitive Measurements. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_4

Download citation

Publish with us

Policies and ethics