Skip to main content

A Correlated Study of Nanotube/Nanowire Transistor Between TEM Inspection and Electrical Characterization

  • Chapter
  • First Online:
Nanowire Electronics

Part of the book series: Nanostructure Science and Technology ((NST))

  • 991 Accesses

Abstract

In this chapter, we introduce a novel method for a correlated study of nanowire/nanotube based on electrical measurements and electron microscope imaging. Two kinds of chip platforms are used, which named as the through-hole chip and the membrane chip, respectively. These kinds of chip platforms allow a physical correlation to be established for transmission electron microscopy inspection and electrical characterization. In order to demonstrate the correlated study, we conduct a few nanomaterials, including carbon nanotube, nanowire, and graphene derivatives, which are placed on top of the specific chips by manipulators. The results strongly indicate that the electrical property in the quasi-one-dimensional nanomaterials is sensitive to their structure such defect, contamination, and adsorption from environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yann-Wen L, Wen-Hao C et al (2012) Effects of oxygen bonding on defective semiconducting and metallic single-walled carbon nanotube bundles. Carbon 50:4619–4627

    Article  Google Scholar 

  2. Yu-Chen L, Yu-Lun C et al (2007) P-type a-Fe2O3 nanowire and their n-type transition in a reductive ambient. Small 3:1356–1361

    Article  Google Scholar 

  3. Yen-Chun H, Po-Yuan C et al (2014) Using binary resistors to achieve multilevel resistive switching in multilayer NiO/Pt nanowire arrays. NPG Asia Materials 6:e85

    Article  Google Scholar 

  4. Yuzvinsky TD, Fennimore AM et al (2005) A. Precision cutting of nanotubes with a low-energy electron beam. Appl Phys Lett 86:053109

    Article  Google Scholar 

  5. Li Z, Wang CY et al (2009) First-principles study for transport properties of defective carbon nanotubes with oxygen adsorption. Eur Phys J B 69:375–382

    Article  CAS  Google Scholar 

  6. Lee SM, Lee YH et al (1999) Defect-induced oxidation of graphite. Phys Rev Lett 82:217–220

    Article  CAS  Google Scholar 

  7. Chan SP, Chen G et al (2003) Oxidation of carbon nanotubes by singlet O2. Phys Rev Lett 90086403:419–501

    Google Scholar 

  8. Pumera M (2009) Imaging of oxygen-containing groups on walls of carbon nanotubes. Chem Asian J 4:250–253

    Article  CAS  Google Scholar 

  9. Grujicic M, Cao G et al (2003) The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes. Appl Surf Sci 211:166–183

    Article  CAS  Google Scholar 

  10. Barone V, Heyd J et al (2004) Effect of oxygen chemisorption on the energy band gap of a chiral semiconducting singlewalled carbon nanotube. Chem Phy Lett 389:289–292

    Article  CAS  Google Scholar 

  11. Kamimura T, Yamamoto K et al (2005) N-type doping for single-walled carbon nanotubes by oxygen ion implantation with 25eV ultralow-energy ion beam. Jpn J Appl Phys 44:8237–8239

    Article  CAS  Google Scholar 

  12. Yamamoto K, Kamimura T et al (2012) Electrical transport characteristic of carbon nanotube after mass-separated ultra-low-energy oxygen ion beams irradiation. Appl Surf Sci 252:5579–5582

    Article  Google Scholar 

  13. Huang CW, Wu HC et al (2007) Hydrogen storage in platelet graphite nanofibers. Sep Purif Technol 58:219–223

    Article  CAS  Google Scholar 

  14. Lan YW, Chang WH et al (2014) Stacking fault induced tunnel barrier in platelet graphite nanofiber. Appl Phys Lett 105:103505

    Article  Google Scholar 

  15. Grabert H, Devoret MH et al (2012) Single charge tunneling: coulomb blockade phenomena in nanostructures. NATO ASI Ser. B: Phys 294:65–90

    Google Scholar 

  16. Moriyama S, Toratani K, Tsuya D et al (2004) Electrical transport in semiconducting carbon nanotubes. Phys E 24:46–49

    Article  CAS  Google Scholar 

  17. Lan Y-W, Aravind K, Wu C-S, Kuan C-H, Chang-Liao K-S, Chen C-D (2012) Spin-orbit interaction in a single-walled carbon nanotube probed by Kondo resonance. Carbon 50:3748–3752

    Article  CAS  Google Scholar 

  18. Aravind K, Su YW et al (2012) Magnetic-field and temperature dependence of the energy gap in InN nanobelt. AIP Adv 2:012155

    Article  Google Scholar 

  19. Lan YW, Torres CM et al (2016) Self-aligned graphene oxide nanoribbon stack with gradient bandgap for visible-light photodetection. Nano Energy 27:114–120

    Article  CAS  Google Scholar 

  20. Sun CL, Chen LC et al (2011) Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5:7788–7795

    Article  CAS  Google Scholar 

  21. Zhu Y, Li X et al (2012) Quantitative analysis of structure and bandgap changes in graphene oxide nanoribbons during thermal annealing. JACS 134:11774–11780

    Article  CAS  Google Scholar 

  22. Dhakate SR, Chauhan N et al (2011) The production of multilayer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49:4170–4178

    Article  CAS  Google Scholar 

  23. Lan YW, Kuan CH, Nguyen LN et al (2011) Identification of embedded charge defects in suspended silicon nanowires using a carbon-nanotube cantilever gate. Appl Phys Lett 99:053104–1–053104-3

    Google Scholar 

  24. Nguyen L-N, Lin M-C, Chen H-S, Lan Y-W, Wu C-S, Chang-Liao K-S, Chen C-D (2012) Photoresponse of a nanopore device with a single embedded ZnO nano- particle. Nanotechnology 23:165201

    Article  Google Scholar 

  25. Liao Z-M, Xu J et al (2008) Photovoltaic effect and charge storage in single ZnO nanowires. Appl Phys Lett 93:023111–1–023111-3

    Article  Google Scholar 

  26. Fan Z, Lu JG (2005) Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Appl Phys Lett 86:032111–1–032111-3

    Google Scholar 

  27. Nguyen L-N, Lan Y-W et al (2014) Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2. Nano Lett 14:2381–2386

    Article  CAS  Google Scholar 

  28. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  Google Scholar 

  29. Chiang WH, Lin TC et al (2010) Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Adv 6:2270–2278

    Article  Google Scholar 

  30. Han MY, Ozyilmaz B et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805–1–206805-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann-Wen Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lan, YW., Chen, PC. (2019). A Correlated Study of Nanotube/Nanowire Transistor Between TEM Inspection and Electrical Characterization. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_2

Download citation

Publish with us

Policies and ethics