Skip to main content

Nanowire-Based Lasers

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Taking advantage of nanowires’ quasi-one-dimensional nature, flexibility in material choice and combination, and intrinsic optoelectronic properties, intensive research has been conducted in the use of nanowires for sub-wavelength laser systems. In this chapter, we discuss the lasing mechanisms in nanowire and latest, most effective materials for nanowire lasers. An exploration of wavelength tunability is followed by some of the latest methods in nanowire lasers. In order to improve the performance of the nanowire lasers furthermore, several new nanowire laser cavity structures, especially surface plasmon polariton lasers, are introduced later. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Einstein A (1916) Strahlungs-Emission und ­Absorption nach der Quantentheorie, vol 18

    Google Scholar 

  2. Schawlow AL, Townes CH (1958) Infrared and optical masers

    Article  CAS  Google Scholar 

  3. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494

    Article  Google Scholar 

  4. Ning CZ (2012) Semiconductor nanowire lasers. Semicond Semimetals 86:455–486

    Article  CAS  Google Scholar 

  5. Tong L, Dai L, Wu X, Guo X, Ma Y (2013) Semiconductor nanowire lasers. Adv Opt Photon 5(3):216–273

    Article  Google Scholar 

  6. Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3(3):569–576

    Article  CAS  Google Scholar 

  7. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897

    Article  CAS  Google Scholar 

  8. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13(2):113–116

    Article  CAS  Google Scholar 

  9. van Vugt LK, Rühle S, Vanmaekelbergh D (2006) Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett 6(12):2707–2711

    Article  Google Scholar 

  10. Wiersig J (2002) Hexagonal dielectric resonators and microcrystal lasers. Phys Rev A 67(2):426–430

    Google Scholar 

  11. Barrelet CJ, Bao JM, Loncar M, Park HG, Capasso F, Lieber CM (2006) Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett 6(1):11–15. https://doi.org/10.1021/nl0522983

    Article  CAS  Google Scholar 

  12. Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L (2011) Single-nanowire single-mode laser. Nano Lett 11(3):1122

    Article  CAS  Google Scholar 

  13. Maslov AV, Ning CZ (2004) Modal gain in a semiconductor nanowire laser with anisotropic band structure. IEEE J Quantum Electron 40(10):1389–1397

    Article  CAS  Google Scholar 

  14. Li Q, Wright JB, Chow WW, Luk TS, Brener I, Lester LF, Wang GT (2012) Single-mode GaN nanowire lasers. Opt Express 20(16):17873

    Article  CAS  Google Scholar 

  15. Wang S, Hu Z, Yu H, Fang W, Qiu M, Tong L (2009) Endface reflectivities of optical nanowires. Opt Express 17(13):10881–10886

    Article  CAS  Google Scholar 

  16. Chen L, Towe E (2006) Nanowire lasers with distributed-Bragg-reflector mirrors. Appl Phys Lett 89(5):89

    Google Scholar 

  17. Wu X, Li H, Liu L, Xu L (2008) Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Appl Phys Lett 93(8):1710

    Google Scholar 

  18. Wu X, Sun Y, Suter JD, Fan X (2009) Single mode coupled optofluidic ring resonator dye lasers. Appl Phys Lett 94(24):381

    Google Scholar 

  19. Huang D, Xu E, Zhou L, Li X, Zhang X, Zhang Y, Yu Y (2010) Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt Lett 35(8):1242–1244

    Article  Google Scholar 

  20. Lang RJ, Yariv A (2002) An exact formulation of coupled-mode theory for coupled-cavity lasers. IEEE J Quantum Electron 24(1):66–72

    Article  Google Scholar 

  21. Seo MK, Yang JK, Jeong KY, Park HG, Qian F, Ee HS, No YS, Lee YH (2008) Modal characteristics in a single-nanowire cavity with a triangular cross section. Nano Lett 8(12):4534

    Article  CAS  Google Scholar 

  22. Röder R, Ploss D, Kriesch A, Buschlinger R, Geburt S, Peschel U, Ronning C (2014) Polarization features of optically pumped CdS nanowire lasers. J Phys D Appl Phys 47(39):394012

    Article  Google Scholar 

  23. Bernard MGA, Duraffourg G (2010) 10–laser conditions in semiconductors *. Essentials of Lasers 1(7):699–703

    Google Scholar 

  24. Couteau C, Larrue A, Wilhelm C, Soci C (2015) Nanowire lasers. Nano 4(1):90–107

    Google Scholar 

  25. Arnardottir KB, Kyriienko O, Portnoi ME, Shelykh IA (2013) One-dimensional Van Hove polaritons. Phys Rev B 87(12):125408

    Article  Google Scholar 

  26. Zhang Q, Liu X, Utama MI, Zhang J, De lMM, Arbiol J, Lu Y, Sum TC, Xiong Q (2012) Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett 12(12):6420

    Article  CAS  Google Scholar 

  27. Maslov AV, Ning CZ (2003) Reflection of guided modes in a semiconductor nanowire laser. Appl Phys Lett 83(6):1237–1239

    Article  CAS  Google Scholar 

  28. Ning CZ, Ding K, Fan F, Liu ZC (2014) Semiconductor Nanolasers (a tutorial), Photonics Society Summer Topical Meeting Series, pp 23–24

    Google Scholar 

  29. Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B Condens Matter 38(14):9797

    Article  CAS  Google Scholar 

  30. Wegscheider W, Pfeiffer LN, Dignam MM, Pinczuk A, West KW, Mccall SL, Hull R (1993) Lasing from excitons in quantum wires. Phys Rev Lett 71(24):4071

    Article  CAS  Google Scholar 

  31. Agarwal R, Barrelet CJ, Lieber CM (2005) Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett 5(5):917

    Article  CAS  Google Scholar 

  32. Changhasnain CJ (2011) Nanolasers grown on silicon. Nat Photonics 5(3):170–175

    Article  Google Scholar 

  33. Lončar M, Zhang Y (2008) Ultra-high quality factor optical resonators based on semiconductor nanowires. Opt Express 16(22):17400

    Article  Google Scholar 

  34. Wang MQ, Huang YZ, Chen Q, Cai ZP (2006) Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique. IEEE J Quantum Electron 42(2):146–151

    Article  CAS  Google Scholar 

  35. Li ZY, Ho KM (2005) Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays. Phys Rev B 71(4)

    Google Scholar 

  36. Ding Y, Motohisa J, Hua B, Shinjiroh Hara A, Fukui T (2007) Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy. Nano Lett 7(12):3598–3602

    Article  CAS  Google Scholar 

  37. Johnson JC, Yan HQ, Yang PD, Saykally RJ (2003) Optical cavity effects in ZnO nanowire lasers and waveguides. J Phys Chem B 107(34):8816–8828. https://doi.org/10.1021/jp034482n

    Article  CAS  Google Scholar 

  38. Eaton SW, Fu A, Wong AB, Ning CZ, Yang PD (2016) Semiconductor nanowire lasers. Nat Rev Mater 1(6):Artn 16028. https://doi.org/10.1038/Natrevmats.2016.28

    Article  Google Scholar 

  39. Ning CZ (2013) What is laser threshold? Ieee J Sel Top Quant 19(4):Artn 1503604. https://doi.org/10.1109/Jstqe.2013.2259222

    Article  Google Scholar 

  40. Chow WW, Jahnke F, Gies C (2014) Emission properties of nanolasers during the transition to lasing. Light-Sci Appl 3:ARTN e201. https://doi.org/10.1038/lsa.2014.82

    Article  CAS  Google Scholar 

  41. Choi HJ, Johnson JC, He RR, Lee SK, Kim F, Pauzauskie P, Goldberger J, Saykally RJ, Yang PD (2003) Self-organized GaN quantum wire UV lasers. J Phys Chem B 107(34):8721–8725. https://doi.org/10.1021/jp034734k

    Article  CAS  Google Scholar 

  42. Zhang CF, Dong ZW, You GJ, Qian SX, Deng H (2006) Multiphoton route to ZnO nanowire lasers. Opt Lett 31(22):3345–3347. https://doi.org/10.1364/Ol.31.003345

    Article  CAS  Google Scholar 

  43. Pan AL, Liu RB, Zhang QL, Wan Q, He PB, Zacharias M, Zou BS (2007) Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts. J Phys Chem C 111(38):14253–14256. https://doi.org/10.1021/jp0740548

    Article  CAS  Google Scholar 

  44. Pan AL, Zhou WC, Leong ESP, Liu RB, Chin AH, Zou BS, Ning CZ (2009) Continuous alloy-composition spatial grading and Superbroad wavelength-tunable nanowire lasers on a single Chip. Nano Lett 9(2):784–788. https://doi.org/10.1021/nl803456k

    Article  CAS  Google Scholar 

  45. Zapien JA, Jiang Y, Meng XM, Chen W, Au FCK, Lifshitz Y, Lee ST (2004) Room-temperature single nanoribbon lasers. Appl Phys Lett 84(7):1189–1191. https://doi.org/10.1063/1.1647270

    Article  CAS  Google Scholar 

  46. Gao HW, Fu A, Andrews SC, Yang PD (2013) Cleaved-coupled nanowire lasers. P Natl Acad Sci USA 110(3):865–869. https://doi.org/10.1073/pnas.1217335110

    Article  Google Scholar 

  47. Gradecak S, Qian F, Li Y, Park HG, Lieber CM (2005) GaN nanowire lasers with low lasing thresholds. Appl Phys Lett 87(17):Artn 173111. https://doi.org/10.1063/1.2115087

    Article  CAS  Google Scholar 

  48. Qian F, Li Y, Gradecak S, Park HG, Dong YJ, Ding Y, Wang ZL, Lieber CM (2008) Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater 7(9):701–706. https://doi.org/10.1038/nmat2253

    Article  CAS  Google Scholar 

  49. Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan HH, Jagadish C (2013) Optically pumped room-temperature GaAs nanowire lasers. Nat Photonics 7(12):963–968. https://doi.org/10.1038/Nphoton.2013.303

    Article  CAS  Google Scholar 

  50. Mayer B, Rudolph D, Schnell J, Morkotter S, Winnerl J, Treu J, Muller K, Bracher G, Abstreiter G, Koblmuller G, Finley JJ (2013) Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat Commun 4:Artn 2931. https://doi.org/10.1038/Ncomms3931

    Article  Google Scholar 

  51. Chin AH, Vaddiraju S, Maslov AV, Ning CZ, Sunkara MK, Meyyappan M (2006) Near-infrared semiconductor subwavelength-wire lasers. Appl Phys Lett 88(16):241

    Article  Google Scholar 

  52. Gao Q, Saxena D, Wang F, Fu L, Mokkapati S, Guo YA, Li L, Wong-Leung J, Caroff P, Tan HH, Jagadish C (2014) Selective-area epitaxy of pure Wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett 14(9):5206–5211. https://doi.org/10.1021/nl5021409

    Article  CAS  Google Scholar 

  53. Zhang LJ, Luo JW, Zunger A, Akopian N, Zwiller V, Harmand JC (2010) Wide InP nanowires with Wurtzite/Zincblende Superlattice segments are type-II whereas narrower nanowires become type-I: an atomistic pseudopotential calculation. Nano Lett 10(10):4055–4060. https://doi.org/10.1021/nl102109s

    Article  CAS  Google Scholar 

  54. Zhang CF, Zhang F, Xia T, Kumar N, Hahm JI, Liu J, Wang ZL, Xu J (2009) Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express 17(10):7893–7900

    Article  CAS  Google Scholar 

  55. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245. https://doi.org/10.1038/nature01353

    Article  CAS  Google Scholar 

  56. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514. https://doi.org/10.1038/Nphoton.2014.134

    Article  CAS  Google Scholar 

  57. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630. https://doi.org/10.1021/jz4020162

    Article  CAS  Google Scholar 

  58. Xing J, Liu XF, Zhang Q, Ha ST, Yuan YW, Shen C, Sum TC, Xiong QH (2015) Vapor phase synthesis of Organometal halide perovskite nanowires for tunable room-temperature Nanolasers. Nano Lett 15(7):4571–4577. https://doi.org/10.1021/acs.nanolett.5b01166

    Article  CAS  Google Scholar 

  59. Zhang Q, Su R, Liu XF, Xing J, Sum TC, Xiong QH (2016) High-quality whispering-gallery-mode lasing from cesium lead halide perovskite Nanoplatelets. Adv Funct Mater 26(34):6238–6245. https://doi.org/10.1002/adfm.201601690

    Article  CAS  Google Scholar 

  60. Liu XF, Niu L, Wu CY, Cong CX, Wang H, Zeng QS, He HY, Fu QD, Fu W, Yu T, Jin CH, Liu Z, Sum TC (2016) Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv Sci 3(11):Artn 1600137. https://doi.org/10.1002/Advs.201600137

    Article  Google Scholar 

  61. Zhu HM, Fu YP, Meng F, Wu XX, Gong ZZ, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14(6):636–U115. https://doi.org/10.1038/NMAT4271

    Article  CAS  Google Scholar 

  62. Niu GD, Guo XD, Wang LD (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980. https://doi.org/10.1039/c4ta04994b

    Article  CAS  Google Scholar 

  63. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F, Boyen HG (2015) Intrinsic thermal instability of Methylammonium lead Trihalide perovskite. Adv Energy Mater 5(15):Artn 1500477. https://doi.org/10.1002/Aenm.201500477

    Article  Google Scholar 

  64. Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG (2015) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5(20):Artn 1501310. https://doi.org/10.1002/Aenm.201501310

    Article  Google Scholar 

  65. Eaton SW, Lai ML, Gibson NA, Wong AB, Dou LT, Ma J, Wang LW, Leone SR, Yang PD (2016) Lasing in robust cesium lead halide perovskite nanowires. P Natl Acad Sci USA 113(8):1993–1998. https://doi.org/10.1073/pnas.1600789113

    Article  CAS  Google Scholar 

  66. Li JB, Meng C, Liu Y, Wu XQ, Lu YZ, Ye Y, Dai L, Tong LM, Liu X, Yang Q (2013) Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Adv Mater 25(6):833–837. https://doi.org/10.1002/adma.201203692

    Article  CAS  Google Scholar 

  67. Liu XF, Zhang Q, Yip JN, Xiong QH, Sum TC (2013) Wavelength tunable single nanowire lasers based on surface Plasmon Polariton enhanced Burstein-Moss effect. Nano Lett 13(11):5336–5343. https://doi.org/10.1021/nl402836x

    Article  CAS  Google Scholar 

  68. Pauzauskie PJ, Sirbuly DJ, Yang PD (2006) Semiconductor nanowire ring resonator laser. Phys Rev Lett 96(14):Artn 143903. https://doi.org/10.1103/Physrevlett.96.143903

    Article  Google Scholar 

  69. Liu XF, Zhang Q, Xiong QH, Sum TC (2013) Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. Nano Lett 13(3):1080–1085. https://doi.org/10.1021/nl304362u

    Article  CAS  Google Scholar 

  70. Liu YK, Zapien JA, Shan YY, Geng CY, Lee CS, Lee ST (2005) Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons. Adv Mater 17(11):1372–1377. https://doi.org/10.1002/adma.200401606

    Article  CAS  Google Scholar 

  71. Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6(12):951–956. https://doi.org/10.1038/nmat2037

    Article  CAS  Google Scholar 

  72. Pan AL, Liu RB, Sun MH, Ning CZ (2010) Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4(2):671–680. https://doi.org/10.1021/nn901699h

    Article  CAS  Google Scholar 

  73. Ma YG, Li XY, Yang ZY, Yu HK, Wang P, Tong LM (2010) Pigtailed CdS nanoribbon ring laser. Appl Phys Lett 97(15):Artn 153122. https://doi.org/10.1063/1.3501969

    Article  CAS  Google Scholar 

  74. Yang Q, Jiang XS, Guo X, Chen Y, Tong LM (2009) Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl Phys Lett 94(10):101108. https://doi.org/10.1063/1.3093821

    Article  CAS  Google Scholar 

  75. Wang GZ, Jiang XS, Zhao MX, Ma YG, Fan HB, Yang Q, Tong LM, Xiao M (2012) Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity. Opt Express 20(28):29472–29478. https://doi.org/10.1364/Oe.20.029472

    Article  CAS  Google Scholar 

  76. Liu ZC, Yin LJ, Ning H, Yang ZY, Tong LM, Ning CZ (2013) Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett 13(10):4945–4950. https://doi.org/10.1021/nl4029686

    Article  CAS  Google Scholar 

  77. Zhang T, Shan F (2014) Development and application of surface plasmon polaritons on optical amplification. J Nanomater:Artn 495381. https://doi.org/10.1155/2014/495381

    Google Scholar 

  78. Berini P, De Leon I (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6(1):16–24. https://doi.org/10.1038/nphoton.2011.285

    Article  CAS  Google Scholar 

  79. Maslov AV, Ning CZ (2007) Size reduction of a semiconductor nanowire laser by using metal coating. Proc Spie 6468:Artn 64680i. https://doi.org/10.1117/12.723786

    Article  CAS  Google Scholar 

  80. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  81. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632. https://doi.org/10.1038/nature08364

    Article  CAS  Google Scholar 

  82. Lu YJ, Kim J, Chen HY, Wu CH, Dabidian N, Sanders CE, Wang CY, Lu MY, Li BH, Qiu XG, Chang WH, Chen LJ, Shvets G, Shih CK, Gwo S (2012) Plasmonic Nanolaser using Epitaxially grown silver film. Science 337(6093):450–453. https://doi.org/10.1126/science.1223504

    Article  CAS  Google Scholar 

  83. Zhang Q, Li GY, Liu XF, Qian F, Li Y, Sum TC, Lieber CM, Xiong QH (2014) A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 5:Artn 4953. https://doi.org/10.1038/Ncomms5953

    Article  Google Scholar 

  84. Zhang Q, Shan XY, Feng X, Wang CX, Wang QQ, Jia JF, Xue QK (2011) Modulating resonance modes and Q value of a CdS nanowire cavity by single ag nanoparticles. Nano Lett 11(10):4270–4274. https://doi.org/10.1021/nl2022674

    Article  CAS  Google Scholar 

  85. Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10(1):2–6. https://doi.org/10.1038/nnano.2014.310

    Article  CAS  Google Scholar 

  86. Hill MT, Oei YS, Smalbrugge B, Zhu Y, De Vries T, Van Veldhoven PJ, Van Otten FWM, Eijkemans TJ, Turkiewicz JP, De Waardt H, Geluk EJ, Kwon SH, Lee YH, Notzel R, Smit MK (2007) Lasing in metallic- coated nanocavities. Nat Photonics 1(10):589–594. https://doi.org/10.1038/nphoton.2007.171

    Article  CAS  Google Scholar 

  87. Li KH, Liu X, Wang Q, Zhao S, Mi Z (2015) Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat Nanotechnol 10(2):140–144. https://doi.org/10.1038/Nnano.2014.308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, W., Chen, J., Zhang, Q., Liu, X. (2019). Nanowire-Based Lasers. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_11

Download citation

Publish with us

Policies and ethics